File size: 12,208 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import pytorch_lightning as pl
import torch.nn as nn
import torch.nn.functional as F
import torch
import timm
from torchvision import transforms as T
import open_clip
import sys
import torch
import json
from transformers import BertModel, BertTokenizer
from PIL import Image
from diffusers import StableDiffusionPipeline
import random
import os
from tqdm import tqdm

os.environ['CUDA_LAUNCH_BLOCKING']='1'
torch.backends.cudnn.benchmark = True

class AestheticsMLP(pl.LightningModule):
    # 美学判别器是基于CLIP的基础上接了一个MLP
    def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
        super().__init__()
        self.input_size = input_size
        self.xcol = xcol
        self.ycol = ycol
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            #nn.ReLU(),
            nn.Dropout(0.1),

            nn.Linear(64, 16),
            #nn.ReLU(),

            nn.Linear(16, 1)
        )

    def forward(self, x):
        return self.layers(x)

    def training_step(self, batch, batch_idx):
            x = batch[self.xcol]
            y = batch[self.ycol].reshape(-1, 1)
            x_hat = self.layers(x)
            loss = F.mse_loss(x_hat, y)
            return loss
    
    def validation_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer


class WaterMarkModel(nn.Module):
    def __init__(self, model_path='./watermark_model_v1.pt'):
        super(WaterMarkModel, self).__init__()
        # model definition
        self.model = timm.create_model(
                'efficientnet_b3a', pretrained=True, num_classes=2)

        self.model.classifier = nn.Sequential(
            # 1536 is the orginal in_features
            nn.Linear(in_features=1536, out_features=625),
            nn.ReLU(),  # ReLu to be the activation function
            nn.Dropout(p=0.3),
            nn.Linear(in_features=625, out_features=256),
            nn.ReLU(),
            nn.Linear(in_features=256, out_features=2),
        )
        self.model.load_state_dict(torch.load(model_path))
    def forward(self, x):
        return self.model(x)

class FilterSystem:
    def __init__(
                    self, 
                    clip_model_path="IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese",
                    aesthetics_model_path="./ava+logos-l14-linearMSE.pth",
                    watermark_model_path="./watermark_model_v1.pt"
                ):
        self.clip_model_path = clip_model_path
        self.aesthetics_model_path = aesthetics_model_path
        self.watermark_model_path = watermark_model_path
        self.init_aesthetics_model()
        self.init_clip_model()
        self.init_watermark_model()

    def init_clip_model(self, ):
        # 此处初始化clip模型,返回模型、tokenizer、processor
        text_encoder = BertModel.from_pretrained(self.clip_model_path).eval().cuda()
        text_tokenizer = BertTokenizer.from_pretrained(self.clip_model_path)
        clip_model, _, processor = open_clip.create_model_and_transforms('ViT-L-14', pretrained='openai')
        clip_model = clip_model.eval().cuda()
        self.text_encoder, self.text_tokenizer, self.clip_model, self.processor = text_encoder, text_tokenizer, clip_model, processor
        print("clip model loaded")
        return None

    def init_aesthetics_model(self, ):
        # 此处初始化美学模型
        self.aesthetics_model = AestheticsMLP(768)
        self.aesthetics_model.load_state_dict(torch.load(self.aesthetics_model_path))
        self.aesthetics_model.eval().cuda()
        print("aesthetics model loaded")
        return None

    def init_watermark_model(self, ):
        self.watermark_model = WaterMarkModel(self.watermark_model_path)
        self.watermark_model.eval().cuda()
        self.watermark_processor =  T.Compose([
                                                T.Resize((256, 256)),
                                                T.ToTensor(),
                                                T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                            ])
        print("watermark model loaded")
        return None

    def get_image_feature(self, images):
        # 此处返回图像的特征向量
        if isinstance(images, list):
            images = torch.stack([self.processor(image) for image in images]).cuda()
        elif isinstance(images, torch.Tensor):
            images = images.cuda()
        else:
            images = self.processor(images).cuda()

        with torch.no_grad():
            image_features = self.clip_model.encode_image(images)
            image_features /= image_features.norm(dim=1, keepdim=True)
        return image_features
    
    def get_text_feature(self, text):
        # 此处返回文本的特征向量
        if isinstance(text, list) or isinstance(text, str):
            text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].cuda()
        elif isinstance(text, torch.Tensor):
            text = text.cuda()

        with torch.no_grad():
            text_features = self.text_encoder(text)[1]
            text_features /= text_features.norm(dim=1, keepdim=True)
        return text_features

    def calculate_clip_score(self, features1, features2):
        # 此处2个特征向量的相似度,输入可以是 图片+文本、文本+文本、图片+图片。
        # 返回的是相似度矩阵,维度为 f1.shape[0] * f2.shape[0]
        score_matrix =  features1 @ features2.t()
        return score_matrix

    def get_clip_score(self, text, image):
        text_feature = self.get_text_feature(text)
        image_feature = self.get_image_feature(image)
        return self.calculate_clip_score(text_feature, image_feature)

    def get_aesthetics_score(self, features):
        # 此处返回美学分数,传入的是CLIP的feature, 先计算get_image_feature在传入此函数~(模型是ViT-L-14)
        with torch.no_grad():
            scores = self.aesthetics_model(features)
            scores = scores[:, 0].detach().cpu().numpy()
        return scores

    def get_watermark_score(self, images):
        if isinstance(images, list):
            images = torch.stack([self.watermark_processor(image) for image in images]).cuda()
        elif isinstance(images, torch.Tensor):
            images = images.cuda()
        with torch.no_grad():
            pred = self.watermark_model(images)
            watermark_scores = F.softmax(pred, dim=1)[:,0].detach().cpu().numpy()

        return watermark_scores

class InferenceFlickr:
    def __init__(self, sd_model_list, sample_num=20, guidance_scale=7.5, test_caption_path="/cognitive_comp/chenweifeng/project/dataset/mm_data/Flickr30k-CNA/test/flickr30k_cn_test.txt"):
        self.model_name_list = sd_model_list
        self.guidance_scale = guidance_scale
        self.sample_num=sample_num
        self.score_model = FilterSystem()
        self.caption_path = test_caption_path
        self.score = dict()
        self.final_score = dict()

    def init_model(self):
        self.model_list = []
        for model_name in self.model_name_list:
            pipe = StableDiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16).to("cuda")
            self.model_list.append(pipe)

    def generate_image_score(self, prompt_list, model_list):
        generator = torch.Generator(device=0)
        generator = generator.manual_seed(42)
        # num_images = 1
        # latents = None
        # seeds = []
        # for _ in range(num_images):
        #     generator = generator.manual_seed(42)
            
        #     image_latents = torch.randn(
        #         (1, pipe.unet.in_channels, 512 // 8, 512 // 8),
        #         generator = generator,
        #         device =1
        #     )
        #     latents = image_latents if latents is None else torch.cat((latents, image_latents))
        for i, model in enumerate(model_list):
            model_name = self.model_name_list[i]
            self.score[model_name] = dict()
            for j, prompt in tqdm(enumerate(prompt_list)):
                latents = None
                image_latents = torch.randn(
                    (1, model.unet.in_channels, 512 // 8, 512 // 8),
                    generator = generator,
                    device =0,
                    dtype=torch.float16
                )
                latents = image_latents if latents is None else torch.cat((latents, image_latents))
                image = model(prompt, guidance_scale=self.guidance_scale, latents=latents, torch_dtype=torch.float16).images[0]
                image_feature = self.score_model.get_image_feature([image])
                text_feature = self.score_model.get_text_feature(prompt)
                image_clip_score = self.score_model.calculate_clip_score(image_feature, text_feature)
                image_watermark_score = self.score_model.get_watermark_score([image])
                image_aesthetics_score =self.score_model.get_aesthetics_score(image_feature)
                self.score[model_name][prompt] = {
                    "clip_score": float(image_clip_score[0][0]),
                    "watermark_score": float(image_watermark_score[0]),
                    "aesthetics_score": float(image_aesthetics_score[0]),
                }
                image.save(f"tmp/{prompt}_model-{str(i)}.png")

    def get_prompt_list(self, seed=42, ):
        with open(self.caption_path) as fin:
            input_lines = fin.readlines()
        tmp_list = []
        for line in input_lines:
            infos = line.strip('\n').split('\t')
            prompt = infos[1]
            tmp_list.append(prompt)
        random.seed(seed)
        prompt_list = random.sample(tmp_list, self.sample_num)
        return prompt_list

    def run(self):
        self.init_model()
        prompt_list = self.get_prompt_list()
        self.generate_image_score(prompt_list, self.model_list)
        
    def show(self, save_path=None):
        # print(self.score)
        print(self.final_score)
        if save_path:
            with open(save_path, 'w') as fout:
                json.dump(fout, self.final_score, indent=2, ensure_ascii=False)
    
    def calculate_score(self,):
        for model_name in self.score.keys():
            clip_score = 0.0
            watermark_score = 0.0
            aesthetics_score = 0.0
            for prompt in self.score[model_name]:
                clip_score += self.score[model_name][prompt]['clip_score']
                watermark_score += self.score[model_name][prompt]['watermark_score']
                aesthetics_score += self.score[model_name][prompt]['aesthetics_score']
            average_clip_score = clip_score / len(self.score[model_name].keys())
            average_watermark_score = watermark_score / len(self.score[model_name].keys())
            average_aesthetics_score = aesthetics_score / len(self.score[model_name].keys())
            self.final_score[model_name] = {"avg_clip": average_clip_score, "avg_watermark": average_watermark_score, 'avg_aesthetics': average_aesthetics_score}

def main():
    model_path = sys.argv[1]
    model_list = [
        # '/cognitive_comp/chenweifeng/project/stable-diffusion-lightning/finetune_taiyi_v0.40_laion',
        # '/cognitive_comp/chenweifeng/project/stable-diffusion-chinese/finetune_taiyi0'
        # "/cognitive_comp/lixiayu/diffuser_models/wukong_epoch1"
        # "/cognitive_comp/lixiayu/work/Fengshenbang-LM/fengshen/workspace/taiyi-stablediffusion-laion/60per_ckpt",
        model_path
    ]
    score_model = InferenceFlickr(model_list, sample_num=1000)
    score_model.run()
    score_model.calculate_score()
    score_model.show()

if __name__ == "__main__":
    main()