File size: 29,405 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
import os
import sys
# sys.path.insert(0, f'{PROJECT_DIR}/guided-diffusion')   # 加在前面,不再读取库文件的东西。
import subprocess
import io
import torch.nn as nn
from torch.nn import functional as F
import torch
import torchvision.transforms.functional as TF
import torchvision.transforms as T
import math
import requests
import cv2
from resize_right import resize
from guided_diffusion.guided_diffusion.script_util import model_and_diffusion_defaults
from types import SimpleNamespace
from PIL import Image
import argparse
from guided_diffusion.guided_diffusion.unet import HFUNetModel
from tqdm.notebook import tqdm
from datetime import datetime
from guided_diffusion.guided_diffusion.script_util import create_model_and_diffusion
import clip
from transformers import BertForSequenceClassification, BertTokenizer
import gc
import random


# ======================== GLOBAL SETTING ========================
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))

useCPU = False  # @param {type:"boolean"}
skip_augs = False  # @param{type: 'boolean'}
perlin_init = False  # @param{type: 'boolean'}

use_secondary_model = False
diffusion_model = "custom"

# Dimensions must by multiples of 64.
side_x = 512
side_y = 512

diffusion_sampling_mode = 'ddim'  # @param ['plms','ddim']
use_checkpoint = True  # @param {type: 'boolean'}
ViTB32 = False  # @param{type:"boolean"}
ViTB16 = False  # @param{type:"boolean"}
ViTL14 = True  # @param{type:"boolean"}
ViTL14_336px = False  # @param{type:"boolean"}
RN101 = False  # @param{type:"boolean"}
RN50 = False  # @param{type:"boolean"}
RN50x4 = False  # @param{type:"boolean"}
RN50x16 = False  # @param{type:"boolean"}
RN50x64 = False  # @param{type:"boolean"}


# @markdown #####**OpenCLIP settings:**
ViTB32_laion2b_e16 = False  # @param{type:"boolean"}
ViTB32_laion400m_e31 = False  # @param{type:"boolean"}
ViTB32_laion400m_32 = False  # @param{type:"boolean"}
ViTB32quickgelu_laion400m_e31 = False  # @param{type:"boolean"}
ViTB32quickgelu_laion400m_e32 = False  # @param{type:"boolean"}
ViTB16_laion400m_e31 = False  # @param{type:"boolean"}
ViTB16_laion400m_e32 = False  # @param{type:"boolean"}
RN50_yffcc15m = False  # @param{type:"boolean"}
RN50_cc12m = False  # @param{type:"boolean"}
RN50_quickgelu_yfcc15m = False  # @param{type:"boolean"}
RN50_quickgelu_cc12m = False  # @param{type:"boolean"}
RN101_yfcc15m = False  # @param{type:"boolean"}
RN101_quickgelu_yfcc15m = False  # @param{type:"boolean"}

# @markdown ####**Basic Settings:**

# NOTE steps可以改这里,需要重新初始化模型,我懒得改接口了orz
steps = 100  # @param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true}
tv_scale = 0  # @param{type: 'number'}
range_scale = 150  # @param{type: 'number'}
sat_scale = 0  # @param{type: 'number'}
cutn_batches = 1  # @param{type: 'number'}  # NOTE 这里会对图片做数据增强,累计计算n次CLIP的梯度,以此作为guidance。
skip_augs = False  # @param{type: 'boolean'}
# @markdown ####**Saving:**

intermediate_saves = 0  # @param{type: 'raw'}
intermediates_in_subfolder = True  # @param{type: 'boolean'}

# perlin_init = False  # @param{type: 'boolean'}
perlin_mode = 'mixed'  # @param ['mixed', 'color', 'gray']
set_seed = 'random_seed'  # @param{type: 'string'}
eta = 0.8  # @param{type: 'number'}
clamp_grad = True  # @param{type: 'boolean'}
clamp_max = 0.05  # @param{type: 'number'}

# EXTRA ADVANCED SETTINGS:
randomize_class = True
clip_denoised = False
fuzzy_prompt = False
rand_mag = 0.05

# @markdown ---
cut_overview = "[12]*400+[4]*600"  # @param {type: 'string'}
cut_innercut = "[4]*400+[12]*600"  # @param {type: 'string'}
cut_ic_pow = "[1]*1000"  # @param {type: 'string'}
cut_icgray_p = "[0.2]*400+[0]*600"  # @param {type: 'string'}


# @markdown ####**Transformation Settings:**
use_vertical_symmetry = False  # @param {type:"boolean"}
use_horizontal_symmetry = False  # @param {type:"boolean"}
transformation_percent = [0.09]  # @param

display_rate = 3  # @param{type: 'number'}
n_batches = 1  # @param{type: 'number'}

# @markdown If you're having issues with model downloads, check this to compare SHA's:
check_model_SHA = False  # @param{type:"boolean"}
interp_spline = 'Linear'  # Do not change, currently will not look good. param ['Linear','Quadratic','Cubic']{type:"string"}
resume_run = False
batch_size = 1


def createPath(filepath):
    os.makedirs(filepath, exist_ok=True)


def wget(url, outputdir):
    res = subprocess.run(['wget', url, '-P', f'{outputdir}'], stdout=subprocess.PIPE).stdout.decode('utf-8')
    print(res)


def alpha_sigma_to_t(alpha, sigma):
    return torch.atan2(sigma, alpha) * 2 / math.pi


def interp(t):
    return 3 * t**2 - 2 * t ** 3


def perlin(width, height, scale=10, device=None):
    gx, gy = torch.randn(2, width + 1, height + 1, 1, 1, device=device)
    xs = torch.linspace(0, 1, scale + 1)[:-1, None].to(device)
    ys = torch.linspace(0, 1, scale + 1)[None, :-1].to(device)
    wx = 1 - interp(xs)
    wy = 1 - interp(ys)
    dots = 0
    dots += wx * wy * (gx[:-1, :-1] * xs + gy[:-1, :-1] * ys)
    dots += (1 - wx) * wy * (-gx[1:, :-1] * (1 - xs) + gy[1:, :-1] * ys)
    dots += wx * (1 - wy) * (gx[:-1, 1:] * xs - gy[:-1, 1:] * (1 - ys))
    dots += (1 - wx) * (1 - wy) * (-gx[1:, 1:] * (1 - xs) - gy[1:, 1:] * (1 - ys))
    return dots.permute(0, 2, 1, 3).contiguous().view(width * scale, height * scale)


def perlin_ms(octaves, width, height, grayscale, device=None):
    out_array = [0.5] if grayscale else [0.5, 0.5, 0.5]
    # out_array = [0.0] if grayscale else [0.0, 0.0, 0.0]
    for i in range(1 if grayscale else 3):
        scale = 2 ** len(octaves)
        oct_width = width
        oct_height = height
        for oct in octaves:
            p = perlin(oct_width, oct_height, scale, device)
            out_array[i] += p * oct
            scale //= 2
            oct_width *= 2
            oct_height *= 2
    return torch.cat(out_array)


def fetch(url_or_path):
    if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
        r = requests.get(url_or_path)
        r.raise_for_status()
        fd = io.BytesIO()
        fd.write(r.content)
        fd.seek(0)
        return fd
    return open(url_or_path, 'rb')


def read_image_workaround(path):
    """OpenCV reads images as BGR, Pillow saves them as RGB. Work around
    this incompatibility to avoid colour inversions."""
    im_tmp = cv2.imread(path)
    return cv2.cvtColor(im_tmp, cv2.COLOR_BGR2RGB)


def parse_prompt(prompt):
    if prompt.startswith('http://') or prompt.startswith('https://'):
        vals = prompt.rsplit(':', 2)
        vals = [vals[0] + ':' + vals[1], *vals[2:]]
    else:
        vals = prompt.rsplit(':', 1)
    vals = vals + ['', '1'][len(vals):]
    return vals[0], float(vals[1])


def sinc(x):
    return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))


def lanczos(x, a):
    cond = torch.logical_and(-a < x, x < a)
    out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
    return out / out.sum()


def ramp(ratio, width):
    n = math.ceil(width / ratio + 1)
    out = torch.empty([n])
    cur = 0
    for i in range(out.shape[0]):
        out[i] = cur
        cur += ratio
    return torch.cat([-out[1:].flip([0]), out])[1:-1]


def resample(input, size, align_corners=True):
    n, c, h, w = input.shape
    dh, dw = size

    input = input.reshape([n * c, 1, h, w])

    if dh < h:
        kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
        pad_h = (kernel_h.shape[0] - 1) // 2
        input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
        input = F.conv2d(input, kernel_h[None, None, :, None])

    if dw < w:
        kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
        pad_w = (kernel_w.shape[0] - 1) // 2
        input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
        input = F.conv2d(input, kernel_w[None, None, None, :])

    input = input.reshape([n, c, h, w])
    return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)


class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, skip_augs=False):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.skip_augs = skip_augs
        self.augs = T.Compose([
            T.RandomHorizontalFlip(p=0.5),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.RandomPerspective(distortion_scale=0.4, p=0.7),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.RandomGrayscale(p=0.15),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
        ])

    def forward(self, input):
        input = T.Pad(input.shape[2] // 4, fill=0)(input)
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)

        cutouts = []
        for ch in range(self.cutn):
            if ch > self.cutn - self.cutn // 4:
                cutout = input.clone()
            else:
                size = int(max_size * torch.zeros(1,).normal_(mean=.8, std=.3).clip(float(self.cut_size / max_size), 1.))
                offsetx = torch.randint(0, abs(sideX - size + 1), ())
                offsety = torch.randint(0, abs(sideY - size + 1), ())
                cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]

            if not self.skip_augs:
                cutout = self.augs(cutout)
            cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
            del cutout

        cutouts = torch.cat(cutouts, dim=0)
        return cutouts


class MakeCutoutsDango(nn.Module):
    def __init__(self, cut_size, args,
                 Overview=4,
                 InnerCrop=0, IC_Size_Pow=0.5, IC_Grey_P=0.2,
                 ):
        super().__init__()
        self.padargs = {}
        self.cutout_debug = False
        self.cut_size = cut_size
        self.Overview = Overview
        self.InnerCrop = InnerCrop
        self.IC_Size_Pow = IC_Size_Pow
        self.IC_Grey_P = IC_Grey_P
        self.augs = T.Compose([
            T.RandomHorizontalFlip(p=0.5),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation=T.InterpolationMode.BILINEAR),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.RandomGrayscale(p=0.1),
            T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
            T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
        ])

    def forward(self, input):
        cutouts = []
        gray = T.Grayscale(3)
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        output_shape = [1, 3, self.cut_size, self.cut_size]
        pad_input = F.pad(input, ((sideY - max_size) // 2, (sideY - max_size) // 2, (sideX - max_size) // 2, (sideX - max_size) // 2), **self.padargs)
        cutout = resize(pad_input, out_shape=output_shape)

        if self.Overview > 0:
            if self.Overview <= 4:
                if self.Overview >= 1:
                    cutouts.append(cutout)
                if self.Overview >= 2:
                    cutouts.append(gray(cutout))
                if self.Overview >= 3:
                    cutouts.append(TF.hflip(cutout))
                if self.Overview == 4:
                    cutouts.append(gray(TF.hflip(cutout)))
            else:
                cutout = resize(pad_input, out_shape=output_shape)
                for _ in range(self.Overview):
                    cutouts.append(cutout)

            if self.cutout_debug:
                # if is_colab:
                #     TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("/content/cutout_overview0.jpg",quality=99)
                # else:
                TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("cutout_overview0.jpg", quality=99)

        if self.InnerCrop > 0:
            for i in range(self.InnerCrop):
                size = int(torch.rand([])**self.IC_Size_Pow * (max_size - min_size) + min_size)
                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
                if i <= int(self.IC_Grey_P * self.InnerCrop):
                    cutout = gray(cutout)
                cutout = resize(cutout, out_shape=output_shape)
                cutouts.append(cutout)
            if self.cutout_debug:
                # if is_colab:
                #     TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("/content/cutout_InnerCrop.jpg",quality=99)
                # else:
                TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("cutout_InnerCrop.jpg", quality=99)
        cutouts = torch.cat(cutouts)
        if skip_augs is not True:
            cutouts = self.augs(cutouts)
        return cutouts


def spherical_dist_loss(x, y):
    x = F.normalize(x, dim=-1)
    y = F.normalize(y, dim=-1)
    return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)


def tv_loss(input):
    """L2 total variation loss, as in Mahendran et al."""
    input = F.pad(input, (0, 1, 0, 1), 'replicate')
    x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
    y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
    return (x_diff**2 + y_diff**2).mean([1, 2, 3])


def range_loss(input):
    return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])


def symmetry_transformation_fn(x):
    # NOTE 强制图像对称
    use_horizontal_symmetry = False
    if use_horizontal_symmetry:
        [n, c, h, w] = x.size()
        x = torch.concat((x[:, :, :, :w // 2], torch.flip(x[:, :, :, :w // 2], [-1])), -1)
        print("horizontal symmetry applied")
    if use_vertical_symmetry:
        [n, c, h, w] = x.size()
        x = torch.concat((x[:, :, :h // 2, :], torch.flip(x[:, :, :h // 2, :], [-2])), -2)
        print("vertical symmetry applied")
    return x


# def split_prompts(prompts):
#     prompt_series = pd.Series([np.nan for a in range(max_frames)])
#     for i, prompt in prompts.items():
#         prompt_series[i] = prompt
#     # prompt_series = prompt_series.astype(str)
#     prompt_series = prompt_series.ffill().bfill()
#     return prompt_series


"""
other chaos settings
"""
# dir settings

outDirPath = f'{PROJECT_DIR}/images_out'
createPath(outDirPath)
model_path = f'{PROJECT_DIR}/models'
createPath(model_path)


# GPU setup
DEVICE = torch.device('cuda:0' if (torch.cuda.is_available() and not useCPU) else 'cpu')
print('Using device:', DEVICE)
device = DEVICE  # At least one of the modules expects this name..
if not useCPU:
    if torch.cuda.get_device_capability(DEVICE) == (8, 0):  # A100 fix thanks to Emad
        print('Disabling CUDNN for A100 gpu', file=sys.stderr)
        torch.backends.cudnn.enabled = False

model_config = model_and_diffusion_defaults()
model_config.update({
    'attention_resolutions': '32, 16, 8',
    'class_cond': False,
    'diffusion_steps': 1000,  # No need to edit this, it is taken care of later.
    'rescale_timesteps': True,
    'timestep_respacing': 250,  # No need to edit this, it is taken care of later.
    'image_size': 512,
    'learn_sigma': True,
    'noise_schedule': 'linear',
    'num_channels': 256,
    'num_head_channels': 64,
    'num_res_blocks': 2,
    'resblock_updown': True,
    'use_checkpoint': use_checkpoint,
    'use_fp16': not useCPU,
    'use_scale_shift_norm': True,
})

model_default = model_config['image_size']
normalize = T.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])

# Make folder for batch
steps_per_checkpoint = steps + 10
# Update Model Settings
timestep_respacing = f'ddim{steps}'
diffusion_steps = (1000 // steps) * steps if steps < 1000 else steps
model_config.update({
    'timestep_respacing': timestep_respacing,
    'diffusion_steps': diffusion_steps,
})


start_frame = 0
print('Starting Run:')
if set_seed == 'random_seed':
    random.seed()
    seed = random.randint(0, 2**32)
    # print(f'Using seed: {seed}')
else:
    seed = int(set_seed)

args = {
    # 'seed': seed,
    'display_rate': display_rate,
    'n_batches': n_batches,
    'batch_size': batch_size,
    'steps': steps,
    'diffusion_sampling_mode': diffusion_sampling_mode,
    # 'width_height': width_height,
    'tv_scale': tv_scale,
    'range_scale': range_scale,
    'sat_scale': sat_scale,
    'cutn_batches': cutn_batches,
    # 'side_x': side_x,
    # 'side_y': side_y,
    'timestep_respacing': timestep_respacing,
    'diffusion_steps': diffusion_steps,
    'cut_overview': eval(cut_overview),
    'cut_innercut': eval(cut_innercut),
    'cut_ic_pow': eval(cut_ic_pow),
    'cut_icgray_p': eval(cut_icgray_p),
    'intermediate_saves': intermediate_saves,
    'intermediates_in_subfolder': intermediates_in_subfolder,
    'steps_per_checkpoint': steps_per_checkpoint,
    'set_seed': set_seed,
    'eta': eta,
    'clamp_grad': clamp_grad,
    'clamp_max': clamp_max,
    'skip_augs': skip_augs,
    'randomize_class': randomize_class,
    'clip_denoised': clip_denoised,
    'fuzzy_prompt': fuzzy_prompt,
    'rand_mag': rand_mag,
    'use_vertical_symmetry': use_vertical_symmetry,
    'use_horizontal_symmetry': use_horizontal_symmetry,
    'transformation_percent': transformation_percent,
}
args = SimpleNamespace(**args)

# ======================== GLOBAL SETTING END ========================


class Diffuser:
    def __init__(self, cutom_path='IDEA-CCNL/Taiyi-Diffusion-532M-Nature'):
        self.model_setup(cutom_path)

    def model_setup(self, custom_path):
        # LOADING MODEL
        os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
        print(f'Prepping model...model name: {custom_path}')
        __, self.diffusion = create_model_and_diffusion(**model_config)
        self.model = HFUNetModel.from_pretrained(custom_path)
        # total = get_parameter_num(self.model)
        # print("Number of parameter: %.2fM" % (total/1e6))
        # print("Number of parameter: %.2fM" % (total/1024/1024))

        self.model.requires_grad_(False).eval().to(device)
        for name, param in self.model.named_parameters():
            if 'qkv' in name or 'norm' in name or 'proj' in name:
                param.requires_grad_()
        if model_config['use_fp16']:
            self.model.convert_to_fp16()
        print(f'Diffusion_model Loaded {diffusion_model}')

        # NOTE Directly Load The Text Encoder From Hugging Face
        print('Prepping model...model name: CLIP')
        self.taiyi_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese")
        self.taiyi_transformer = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval().to(device)
        self.clip_models = []
        if ViTB32:
            self.clip_models.append(clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device))
        if ViTB16:
            self.clip_models.append(clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device))
        if ViTL14:
            self.clip_models.append(clip.load('ViT-L/14', jit=False)[0].eval().requires_grad_(False).to(device))
        if ViTL14_336px:
            self.clip_models.append(clip.load('ViT-L/14@336px', jit=False)[0].eval().requires_grad_(False).to(device))
        print('CLIP Loaded')
        # self.lpips_model = lpips.LPIPS(net='vgg').to(device)

    def generate(self,
                 input_text_prompts=['夕阳西下'],
                 init_image=None,
                 skip_steps=10,
                 clip_guidance_scale=7500,
                 init_scale=2000,
                 st_dynamic_image=None,
                 seed=None,
                 side_x=512,
                 side_y=512,
                 ):

        seed = seed
        frame_num = 0
        init_image = init_image
        init_scale = init_scale
        skip_steps = skip_steps
        loss_values = []
        # if seed is not None:
        #     np.random.seed(seed)
        #     random.seed(seed)
        #     torch.manual_seed(seed)
        #     torch.cuda.manual_seed_all(seed)
        #     torch.backends.cudnn.deterministic = True
        # target_embeds, weights = [], []
        frame_prompt = input_text_prompts

        print(f'Frame {frame_num} Prompt: {frame_prompt}')

        model_stats = []
        for clip_model in self.clip_models:
            # cutn = 16
            model_stat = {"clip_model": None, "target_embeds": [], "make_cutouts": None, "weights": []}
            model_stat["clip_model"] = clip_model

            for prompt in frame_prompt:
                txt, weight = parse_prompt(prompt)
                # txt = clip_model.encode_text(clip.tokenize(prompt).to(device)).float()
                # NOTE use chinese CLIP
                txt = self.taiyi_transformer(self.taiyi_tokenizer(txt, return_tensors='pt')['input_ids'].to(device)).logits
                if args.fuzzy_prompt:
                    for i in range(25):
                        model_stat["target_embeds"].append((txt + torch.randn(txt.shape).cuda() * args.rand_mag).clamp(0, 1))
                        model_stat["weights"].append(weight)
                else:
                    model_stat["target_embeds"].append(txt)
                    model_stat["weights"].append(weight)

            model_stat["target_embeds"] = torch.cat(model_stat["target_embeds"])
            model_stat["weights"] = torch.tensor(model_stat["weights"], device=device)
            if model_stat["weights"].sum().abs() < 1e-3:
                raise RuntimeError('The weights must not sum to 0.')
            model_stat["weights"] /= model_stat["weights"].sum().abs()
            model_stats.append(model_stat)

        init = None
        if init_image is not None:
            # init = Image.open(fetch(init_image)).convert('RGB')   # 传递的是加载好的图片。而非地址~
            init = init_image
            init = init.resize((side_x, side_y), Image.LANCZOS)
            init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)

        cur_t = None

        def cond_fn(x, t, y=None):
            with torch.enable_grad():
                x_is_NaN = False
                x = x.detach().requires_grad_()
                n = x.shape[0]

                my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
                out = self.diffusion.p_mean_variance(self.model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
                fac = self.diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
                x_in = out['pred_xstart'] * fac + x * (1 - fac)
                x_in_grad = torch.zeros_like(x_in)

                for model_stat in model_stats:
                    for i in range(args.cutn_batches):
                        t_int = int(t.item()) + 1  # errors on last step without +1, need to find source
                        # try:
                        input_resolution = model_stat["clip_model"].visual.input_resolution
                        # except:
                        #     input_resolution = 224

                        cuts = MakeCutoutsDango(input_resolution,
                                                Overview=args.cut_overview[1000 - t_int],
                                                InnerCrop=args.cut_innercut[1000 - t_int],
                                                IC_Size_Pow=args.cut_ic_pow[1000 - t_int],
                                                IC_Grey_P=args.cut_icgray_p[1000 - t_int],
                                                args=args,
                                                )
                        clip_in = normalize(cuts(x_in.add(1).div(2)))
                        image_embeds = model_stat["clip_model"].encode_image(clip_in).float()
                        dists = spherical_dist_loss(image_embeds.unsqueeze(1), model_stat["target_embeds"].unsqueeze(0))
                        dists = dists.view([args.cut_overview[1000 - t_int] + args.cut_innercut[1000 - t_int], n, -1])
                        losses = dists.mul(model_stat["weights"]).sum(2).mean(0)
                        loss_values.append(losses.sum().item())  # log loss, probably shouldn't do per cutn_batch
                        x_in_grad += torch.autograd.grad(losses.sum() * clip_guidance_scale, x_in)[0] / cutn_batches
                tv_losses = tv_loss(x_in)
                range_losses = range_loss(out['pred_xstart'])
                sat_losses = torch.abs(x_in - x_in.clamp(min=-1, max=1)).mean()
                loss = tv_losses.sum() * tv_scale + range_losses.sum() * range_scale + sat_losses.sum() * sat_scale
                if init is not None and init_scale:
                    init_losses = self.lpips_model(x_in, init)
                    loss = loss + init_losses.sum() * init_scale
                x_in_grad += torch.autograd.grad(loss, x_in)[0]
                if not torch.isnan(x_in_grad).any():
                    grad = -torch.autograd.grad(x_in, x, x_in_grad)[0]
                else:
                    x_is_NaN = True
                    grad = torch.zeros_like(x)
            if args.clamp_grad and not x_is_NaN:
                magnitude = grad.square().mean().sqrt()
                return grad * magnitude.clamp(max=args.clamp_max) / magnitude  # min=-0.02, min=-clamp_max,
            return grad

        if args.diffusion_sampling_mode == 'ddim':
            sample_fn = self.diffusion.ddim_sample_loop_progressive
        else:
            sample_fn = self.diffusion.plms_sample_loop_progressive

        for i in range(args.n_batches):
            current_time = datetime.now().strftime('%y%m%d-%H%M%S_%f')

            batchBar = tqdm(range(args.n_batches), desc="Batches")
            batchBar.n = i
            batchBar.refresh()
            gc.collect()
            torch.cuda.empty_cache()
            cur_t = self.diffusion.num_timesteps - skip_steps - 1
            # total_steps = cur_t

            if args.diffusion_sampling_mode == 'ddim':
                samples = sample_fn(
                    self.model,
                    (batch_size, 3, side_y, side_x),
                    clip_denoised=clip_denoised,
                    model_kwargs={},
                    cond_fn=cond_fn,
                    progress=True,
                    skip_timesteps=skip_steps,
                    init_image=init,
                    randomize_class=randomize_class,
                    eta=eta,
                    transformation_fn=symmetry_transformation_fn,
                    transformation_percent=args.transformation_percent
                )
            else:
                samples = sample_fn(
                    self.model,
                    (batch_size, 3, side_y, side_x),
                    clip_denoised=clip_denoised,
                    model_kwargs={},
                    cond_fn=cond_fn,
                    progress=True,
                    skip_timesteps=skip_steps,
                    init_image=init,
                    randomize_class=randomize_class,
                    order=2,
                )

            for j, sample in enumerate(samples):
                cur_t -= 1
                intermediateStep = False
                if args.steps_per_checkpoint is not None:
                    if j % steps_per_checkpoint == 0 and j > 0:
                        intermediateStep = True
                elif j in args.intermediate_saves:
                    intermediateStep = True
                if j % args.display_rate == 0 or cur_t == -1 or intermediateStep:
                    for k, image in enumerate(sample['pred_xstart']):
                        # tqdm.write(f'Batch {i}, step {j}, output {k}:')
                        # percent = math.ceil(j / total_steps * 100)
                        if args.n_batches > 0:
                            filename = f'{current_time}-{parse_prompt(prompt)[0]}.png'
                        image = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
                        if j % args.display_rate == 0 or cur_t == -1:
                            image.save(f'{outDirPath}/{filename}')
                            if st_dynamic_image:
                                st_dynamic_image.image(image, use_column_width=True)
                            # self.current_image = image
        return image


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="setting")
    parser.add_argument('--prompt', type=str, required=True)
    parser.add_argument('--text_scale', type=int, default=5000)
    parser.add_argument('--model_path', type=str, default="IDEA-CCNL/Taiyi-Diffusion-532M-Nature")
    parser.add_argument('--width', type=int, default=512)
    parser.add_argument('--height', type=int, default=512)

    user_args = parser.parse_args()

    dd = Diffuser(user_args.model_path)
    dd.generate([user_args.prompt],
                clip_guidance_scale=user_args.text_scale,
                side_x=user_args.width,
                side_y=user_args.height,
                )