File size: 29,405 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
import os
import sys
# sys.path.insert(0, f'{PROJECT_DIR}/guided-diffusion') # 加在前面,不再读取库文件的东西。
import subprocess
import io
import torch.nn as nn
from torch.nn import functional as F
import torch
import torchvision.transforms.functional as TF
import torchvision.transforms as T
import math
import requests
import cv2
from resize_right import resize
from guided_diffusion.guided_diffusion.script_util import model_and_diffusion_defaults
from types import SimpleNamespace
from PIL import Image
import argparse
from guided_diffusion.guided_diffusion.unet import HFUNetModel
from tqdm.notebook import tqdm
from datetime import datetime
from guided_diffusion.guided_diffusion.script_util import create_model_and_diffusion
import clip
from transformers import BertForSequenceClassification, BertTokenizer
import gc
import random
# ======================== GLOBAL SETTING ========================
PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))
useCPU = False # @param {type:"boolean"}
skip_augs = False # @param{type: 'boolean'}
perlin_init = False # @param{type: 'boolean'}
use_secondary_model = False
diffusion_model = "custom"
# Dimensions must by multiples of 64.
side_x = 512
side_y = 512
diffusion_sampling_mode = 'ddim' # @param ['plms','ddim']
use_checkpoint = True # @param {type: 'boolean'}
ViTB32 = False # @param{type:"boolean"}
ViTB16 = False # @param{type:"boolean"}
ViTL14 = True # @param{type:"boolean"}
ViTL14_336px = False # @param{type:"boolean"}
RN101 = False # @param{type:"boolean"}
RN50 = False # @param{type:"boolean"}
RN50x4 = False # @param{type:"boolean"}
RN50x16 = False # @param{type:"boolean"}
RN50x64 = False # @param{type:"boolean"}
# @markdown #####**OpenCLIP settings:**
ViTB32_laion2b_e16 = False # @param{type:"boolean"}
ViTB32_laion400m_e31 = False # @param{type:"boolean"}
ViTB32_laion400m_32 = False # @param{type:"boolean"}
ViTB32quickgelu_laion400m_e31 = False # @param{type:"boolean"}
ViTB32quickgelu_laion400m_e32 = False # @param{type:"boolean"}
ViTB16_laion400m_e31 = False # @param{type:"boolean"}
ViTB16_laion400m_e32 = False # @param{type:"boolean"}
RN50_yffcc15m = False # @param{type:"boolean"}
RN50_cc12m = False # @param{type:"boolean"}
RN50_quickgelu_yfcc15m = False # @param{type:"boolean"}
RN50_quickgelu_cc12m = False # @param{type:"boolean"}
RN101_yfcc15m = False # @param{type:"boolean"}
RN101_quickgelu_yfcc15m = False # @param{type:"boolean"}
# @markdown ####**Basic Settings:**
# NOTE steps可以改这里,需要重新初始化模型,我懒得改接口了orz
steps = 100 # @param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true}
tv_scale = 0 # @param{type: 'number'}
range_scale = 150 # @param{type: 'number'}
sat_scale = 0 # @param{type: 'number'}
cutn_batches = 1 # @param{type: 'number'} # NOTE 这里会对图片做数据增强,累计计算n次CLIP的梯度,以此作为guidance。
skip_augs = False # @param{type: 'boolean'}
# @markdown ####**Saving:**
intermediate_saves = 0 # @param{type: 'raw'}
intermediates_in_subfolder = True # @param{type: 'boolean'}
# perlin_init = False # @param{type: 'boolean'}
perlin_mode = 'mixed' # @param ['mixed', 'color', 'gray']
set_seed = 'random_seed' # @param{type: 'string'}
eta = 0.8 # @param{type: 'number'}
clamp_grad = True # @param{type: 'boolean'}
clamp_max = 0.05 # @param{type: 'number'}
# EXTRA ADVANCED SETTINGS:
randomize_class = True
clip_denoised = False
fuzzy_prompt = False
rand_mag = 0.05
# @markdown ---
cut_overview = "[12]*400+[4]*600" # @param {type: 'string'}
cut_innercut = "[4]*400+[12]*600" # @param {type: 'string'}
cut_ic_pow = "[1]*1000" # @param {type: 'string'}
cut_icgray_p = "[0.2]*400+[0]*600" # @param {type: 'string'}
# @markdown ####**Transformation Settings:**
use_vertical_symmetry = False # @param {type:"boolean"}
use_horizontal_symmetry = False # @param {type:"boolean"}
transformation_percent = [0.09] # @param
display_rate = 3 # @param{type: 'number'}
n_batches = 1 # @param{type: 'number'}
# @markdown If you're having issues with model downloads, check this to compare SHA's:
check_model_SHA = False # @param{type:"boolean"}
interp_spline = 'Linear' # Do not change, currently will not look good. param ['Linear','Quadratic','Cubic']{type:"string"}
resume_run = False
batch_size = 1
def createPath(filepath):
os.makedirs(filepath, exist_ok=True)
def wget(url, outputdir):
res = subprocess.run(['wget', url, '-P', f'{outputdir}'], stdout=subprocess.PIPE).stdout.decode('utf-8')
print(res)
def alpha_sigma_to_t(alpha, sigma):
return torch.atan2(sigma, alpha) * 2 / math.pi
def interp(t):
return 3 * t**2 - 2 * t ** 3
def perlin(width, height, scale=10, device=None):
gx, gy = torch.randn(2, width + 1, height + 1, 1, 1, device=device)
xs = torch.linspace(0, 1, scale + 1)[:-1, None].to(device)
ys = torch.linspace(0, 1, scale + 1)[None, :-1].to(device)
wx = 1 - interp(xs)
wy = 1 - interp(ys)
dots = 0
dots += wx * wy * (gx[:-1, :-1] * xs + gy[:-1, :-1] * ys)
dots += (1 - wx) * wy * (-gx[1:, :-1] * (1 - xs) + gy[1:, :-1] * ys)
dots += wx * (1 - wy) * (gx[:-1, 1:] * xs - gy[:-1, 1:] * (1 - ys))
dots += (1 - wx) * (1 - wy) * (-gx[1:, 1:] * (1 - xs) - gy[1:, 1:] * (1 - ys))
return dots.permute(0, 2, 1, 3).contiguous().view(width * scale, height * scale)
def perlin_ms(octaves, width, height, grayscale, device=None):
out_array = [0.5] if grayscale else [0.5, 0.5, 0.5]
# out_array = [0.0] if grayscale else [0.0, 0.0, 0.0]
for i in range(1 if grayscale else 3):
scale = 2 ** len(octaves)
oct_width = width
oct_height = height
for oct in octaves:
p = perlin(oct_width, oct_height, scale, device)
out_array[i] += p * oct
scale //= 2
oct_width *= 2
oct_height *= 2
return torch.cat(out_array)
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def read_image_workaround(path):
"""OpenCV reads images as BGR, Pillow saves them as RGB. Work around
this incompatibility to avoid colour inversions."""
im_tmp = cv2.imread(path)
return cv2.cvtColor(im_tmp, cv2.COLOR_BGR2RGB)
def parse_prompt(prompt):
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 2)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 1)
vals = vals + ['', '1'][len(vals):]
return vals[0], float(vals[1])
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.reshape([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.reshape([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, skip_augs=False):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.skip_augs = skip_augs
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
def forward(self, input):
input = T.Pad(input.shape[2] // 4, fill=0)(input)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
cutouts = []
for ch in range(self.cutn):
if ch > self.cutn - self.cutn // 4:
cutout = input.clone()
else:
size = int(max_size * torch.zeros(1,).normal_(mean=.8, std=.3).clip(float(self.cut_size / max_size), 1.))
offsetx = torch.randint(0, abs(sideX - size + 1), ())
offsety = torch.randint(0, abs(sideY - size + 1), ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if not self.skip_augs:
cutout = self.augs(cutout)
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
del cutout
cutouts = torch.cat(cutouts, dim=0)
return cutouts
class MakeCutoutsDango(nn.Module):
def __init__(self, cut_size, args,
Overview=4,
InnerCrop=0, IC_Size_Pow=0.5, IC_Grey_P=0.2,
):
super().__init__()
self.padargs = {}
self.cutout_debug = False
self.cut_size = cut_size
self.Overview = Overview
self.InnerCrop = InnerCrop
self.IC_Size_Pow = IC_Size_Pow
self.IC_Grey_P = IC_Grey_P
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation=T.InterpolationMode.BILINEAR),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.1),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
def forward(self, input):
cutouts = []
gray = T.Grayscale(3)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
output_shape = [1, 3, self.cut_size, self.cut_size]
pad_input = F.pad(input, ((sideY - max_size) // 2, (sideY - max_size) // 2, (sideX - max_size) // 2, (sideX - max_size) // 2), **self.padargs)
cutout = resize(pad_input, out_shape=output_shape)
if self.Overview > 0:
if self.Overview <= 4:
if self.Overview >= 1:
cutouts.append(cutout)
if self.Overview >= 2:
cutouts.append(gray(cutout))
if self.Overview >= 3:
cutouts.append(TF.hflip(cutout))
if self.Overview == 4:
cutouts.append(gray(TF.hflip(cutout)))
else:
cutout = resize(pad_input, out_shape=output_shape)
for _ in range(self.Overview):
cutouts.append(cutout)
if self.cutout_debug:
# if is_colab:
# TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("/content/cutout_overview0.jpg",quality=99)
# else:
TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("cutout_overview0.jpg", quality=99)
if self.InnerCrop > 0:
for i in range(self.InnerCrop):
size = int(torch.rand([])**self.IC_Size_Pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if i <= int(self.IC_Grey_P * self.InnerCrop):
cutout = gray(cutout)
cutout = resize(cutout, out_shape=output_shape)
cutouts.append(cutout)
if self.cutout_debug:
# if is_colab:
# TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("/content/cutout_InnerCrop.jpg",quality=99)
# else:
TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("cutout_InnerCrop.jpg", quality=99)
cutouts = torch.cat(cutouts)
if skip_augs is not True:
cutouts = self.augs(cutouts)
return cutouts
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
def range_loss(input):
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
def symmetry_transformation_fn(x):
# NOTE 强制图像对称
use_horizontal_symmetry = False
if use_horizontal_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :, :w // 2], torch.flip(x[:, :, :, :w // 2], [-1])), -1)
print("horizontal symmetry applied")
if use_vertical_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :h // 2, :], torch.flip(x[:, :, :h // 2, :], [-2])), -2)
print("vertical symmetry applied")
return x
# def split_prompts(prompts):
# prompt_series = pd.Series([np.nan for a in range(max_frames)])
# for i, prompt in prompts.items():
# prompt_series[i] = prompt
# # prompt_series = prompt_series.astype(str)
# prompt_series = prompt_series.ffill().bfill()
# return prompt_series
"""
other chaos settings
"""
# dir settings
outDirPath = f'{PROJECT_DIR}/images_out'
createPath(outDirPath)
model_path = f'{PROJECT_DIR}/models'
createPath(model_path)
# GPU setup
DEVICE = torch.device('cuda:0' if (torch.cuda.is_available() and not useCPU) else 'cpu')
print('Using device:', DEVICE)
device = DEVICE # At least one of the modules expects this name..
if not useCPU:
if torch.cuda.get_device_capability(DEVICE) == (8, 0): # A100 fix thanks to Emad
print('Disabling CUDNN for A100 gpu', file=sys.stderr)
torch.backends.cudnn.enabled = False
model_config = model_and_diffusion_defaults()
model_config.update({
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'diffusion_steps': 1000, # No need to edit this, it is taken care of later.
'rescale_timesteps': True,
'timestep_respacing': 250, # No need to edit this, it is taken care of later.
'image_size': 512,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 256,
'num_head_channels': 64,
'num_res_blocks': 2,
'resblock_updown': True,
'use_checkpoint': use_checkpoint,
'use_fp16': not useCPU,
'use_scale_shift_norm': True,
})
model_default = model_config['image_size']
normalize = T.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
# Make folder for batch
steps_per_checkpoint = steps + 10
# Update Model Settings
timestep_respacing = f'ddim{steps}'
diffusion_steps = (1000 // steps) * steps if steps < 1000 else steps
model_config.update({
'timestep_respacing': timestep_respacing,
'diffusion_steps': diffusion_steps,
})
start_frame = 0
print('Starting Run:')
if set_seed == 'random_seed':
random.seed()
seed = random.randint(0, 2**32)
# print(f'Using seed: {seed}')
else:
seed = int(set_seed)
args = {
# 'seed': seed,
'display_rate': display_rate,
'n_batches': n_batches,
'batch_size': batch_size,
'steps': steps,
'diffusion_sampling_mode': diffusion_sampling_mode,
# 'width_height': width_height,
'tv_scale': tv_scale,
'range_scale': range_scale,
'sat_scale': sat_scale,
'cutn_batches': cutn_batches,
# 'side_x': side_x,
# 'side_y': side_y,
'timestep_respacing': timestep_respacing,
'diffusion_steps': diffusion_steps,
'cut_overview': eval(cut_overview),
'cut_innercut': eval(cut_innercut),
'cut_ic_pow': eval(cut_ic_pow),
'cut_icgray_p': eval(cut_icgray_p),
'intermediate_saves': intermediate_saves,
'intermediates_in_subfolder': intermediates_in_subfolder,
'steps_per_checkpoint': steps_per_checkpoint,
'set_seed': set_seed,
'eta': eta,
'clamp_grad': clamp_grad,
'clamp_max': clamp_max,
'skip_augs': skip_augs,
'randomize_class': randomize_class,
'clip_denoised': clip_denoised,
'fuzzy_prompt': fuzzy_prompt,
'rand_mag': rand_mag,
'use_vertical_symmetry': use_vertical_symmetry,
'use_horizontal_symmetry': use_horizontal_symmetry,
'transformation_percent': transformation_percent,
}
args = SimpleNamespace(**args)
# ======================== GLOBAL SETTING END ========================
class Diffuser:
def __init__(self, cutom_path='IDEA-CCNL/Taiyi-Diffusion-532M-Nature'):
self.model_setup(cutom_path)
def model_setup(self, custom_path):
# LOADING MODEL
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
print(f'Prepping model...model name: {custom_path}')
__, self.diffusion = create_model_and_diffusion(**model_config)
self.model = HFUNetModel.from_pretrained(custom_path)
# total = get_parameter_num(self.model)
# print("Number of parameter: %.2fM" % (total/1e6))
# print("Number of parameter: %.2fM" % (total/1024/1024))
self.model.requires_grad_(False).eval().to(device)
for name, param in self.model.named_parameters():
if 'qkv' in name or 'norm' in name or 'proj' in name:
param.requires_grad_()
if model_config['use_fp16']:
self.model.convert_to_fp16()
print(f'Diffusion_model Loaded {diffusion_model}')
# NOTE Directly Load The Text Encoder From Hugging Face
print('Prepping model...model name: CLIP')
self.taiyi_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese")
self.taiyi_transformer = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval().to(device)
self.clip_models = []
if ViTB32:
self.clip_models.append(clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTB16:
self.clip_models.append(clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTL14:
self.clip_models.append(clip.load('ViT-L/14', jit=False)[0].eval().requires_grad_(False).to(device))
if ViTL14_336px:
self.clip_models.append(clip.load('ViT-L/14@336px', jit=False)[0].eval().requires_grad_(False).to(device))
print('CLIP Loaded')
# self.lpips_model = lpips.LPIPS(net='vgg').to(device)
def generate(self,
input_text_prompts=['夕阳西下'],
init_image=None,
skip_steps=10,
clip_guidance_scale=7500,
init_scale=2000,
st_dynamic_image=None,
seed=None,
side_x=512,
side_y=512,
):
seed = seed
frame_num = 0
init_image = init_image
init_scale = init_scale
skip_steps = skip_steps
loss_values = []
# if seed is not None:
# np.random.seed(seed)
# random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# target_embeds, weights = [], []
frame_prompt = input_text_prompts
print(f'Frame {frame_num} Prompt: {frame_prompt}')
model_stats = []
for clip_model in self.clip_models:
# cutn = 16
model_stat = {"clip_model": None, "target_embeds": [], "make_cutouts": None, "weights": []}
model_stat["clip_model"] = clip_model
for prompt in frame_prompt:
txt, weight = parse_prompt(prompt)
# txt = clip_model.encode_text(clip.tokenize(prompt).to(device)).float()
# NOTE use chinese CLIP
txt = self.taiyi_transformer(self.taiyi_tokenizer(txt, return_tensors='pt')['input_ids'].to(device)).logits
if args.fuzzy_prompt:
for i in range(25):
model_stat["target_embeds"].append((txt + torch.randn(txt.shape).cuda() * args.rand_mag).clamp(0, 1))
model_stat["weights"].append(weight)
else:
model_stat["target_embeds"].append(txt)
model_stat["weights"].append(weight)
model_stat["target_embeds"] = torch.cat(model_stat["target_embeds"])
model_stat["weights"] = torch.tensor(model_stat["weights"], device=device)
if model_stat["weights"].sum().abs() < 1e-3:
raise RuntimeError('The weights must not sum to 0.')
model_stat["weights"] /= model_stat["weights"].sum().abs()
model_stats.append(model_stat)
init = None
if init_image is not None:
# init = Image.open(fetch(init_image)).convert('RGB') # 传递的是加载好的图片。而非地址~
init = init_image
init = init.resize((side_x, side_y), Image.LANCZOS)
init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1)
cur_t = None
def cond_fn(x, t, y=None):
with torch.enable_grad():
x_is_NaN = False
x = x.detach().requires_grad_()
n = x.shape[0]
my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
out = self.diffusion.p_mean_variance(self.model, x, my_t, clip_denoised=False, model_kwargs={'y': y})
fac = self.diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
x_in = out['pred_xstart'] * fac + x * (1 - fac)
x_in_grad = torch.zeros_like(x_in)
for model_stat in model_stats:
for i in range(args.cutn_batches):
t_int = int(t.item()) + 1 # errors on last step without +1, need to find source
# try:
input_resolution = model_stat["clip_model"].visual.input_resolution
# except:
# input_resolution = 224
cuts = MakeCutoutsDango(input_resolution,
Overview=args.cut_overview[1000 - t_int],
InnerCrop=args.cut_innercut[1000 - t_int],
IC_Size_Pow=args.cut_ic_pow[1000 - t_int],
IC_Grey_P=args.cut_icgray_p[1000 - t_int],
args=args,
)
clip_in = normalize(cuts(x_in.add(1).div(2)))
image_embeds = model_stat["clip_model"].encode_image(clip_in).float()
dists = spherical_dist_loss(image_embeds.unsqueeze(1), model_stat["target_embeds"].unsqueeze(0))
dists = dists.view([args.cut_overview[1000 - t_int] + args.cut_innercut[1000 - t_int], n, -1])
losses = dists.mul(model_stat["weights"]).sum(2).mean(0)
loss_values.append(losses.sum().item()) # log loss, probably shouldn't do per cutn_batch
x_in_grad += torch.autograd.grad(losses.sum() * clip_guidance_scale, x_in)[0] / cutn_batches
tv_losses = tv_loss(x_in)
range_losses = range_loss(out['pred_xstart'])
sat_losses = torch.abs(x_in - x_in.clamp(min=-1, max=1)).mean()
loss = tv_losses.sum() * tv_scale + range_losses.sum() * range_scale + sat_losses.sum() * sat_scale
if init is not None and init_scale:
init_losses = self.lpips_model(x_in, init)
loss = loss + init_losses.sum() * init_scale
x_in_grad += torch.autograd.grad(loss, x_in)[0]
if not torch.isnan(x_in_grad).any():
grad = -torch.autograd.grad(x_in, x, x_in_grad)[0]
else:
x_is_NaN = True
grad = torch.zeros_like(x)
if args.clamp_grad and not x_is_NaN:
magnitude = grad.square().mean().sqrt()
return grad * magnitude.clamp(max=args.clamp_max) / magnitude # min=-0.02, min=-clamp_max,
return grad
if args.diffusion_sampling_mode == 'ddim':
sample_fn = self.diffusion.ddim_sample_loop_progressive
else:
sample_fn = self.diffusion.plms_sample_loop_progressive
for i in range(args.n_batches):
current_time = datetime.now().strftime('%y%m%d-%H%M%S_%f')
batchBar = tqdm(range(args.n_batches), desc="Batches")
batchBar.n = i
batchBar.refresh()
gc.collect()
torch.cuda.empty_cache()
cur_t = self.diffusion.num_timesteps - skip_steps - 1
# total_steps = cur_t
if args.diffusion_sampling_mode == 'ddim':
samples = sample_fn(
self.model,
(batch_size, 3, side_y, side_x),
clip_denoised=clip_denoised,
model_kwargs={},
cond_fn=cond_fn,
progress=True,
skip_timesteps=skip_steps,
init_image=init,
randomize_class=randomize_class,
eta=eta,
transformation_fn=symmetry_transformation_fn,
transformation_percent=args.transformation_percent
)
else:
samples = sample_fn(
self.model,
(batch_size, 3, side_y, side_x),
clip_denoised=clip_denoised,
model_kwargs={},
cond_fn=cond_fn,
progress=True,
skip_timesteps=skip_steps,
init_image=init,
randomize_class=randomize_class,
order=2,
)
for j, sample in enumerate(samples):
cur_t -= 1
intermediateStep = False
if args.steps_per_checkpoint is not None:
if j % steps_per_checkpoint == 0 and j > 0:
intermediateStep = True
elif j in args.intermediate_saves:
intermediateStep = True
if j % args.display_rate == 0 or cur_t == -1 or intermediateStep:
for k, image in enumerate(sample['pred_xstart']):
# tqdm.write(f'Batch {i}, step {j}, output {k}:')
# percent = math.ceil(j / total_steps * 100)
if args.n_batches > 0:
filename = f'{current_time}-{parse_prompt(prompt)[0]}.png'
image = TF.to_pil_image(image.add(1).div(2).clamp(0, 1))
if j % args.display_rate == 0 or cur_t == -1:
image.save(f'{outDirPath}/{filename}')
if st_dynamic_image:
st_dynamic_image.image(image, use_column_width=True)
# self.current_image = image
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="setting")
parser.add_argument('--prompt', type=str, required=True)
parser.add_argument('--text_scale', type=int, default=5000)
parser.add_argument('--model_path', type=str, default="IDEA-CCNL/Taiyi-Diffusion-532M-Nature")
parser.add_argument('--width', type=int, default=512)
parser.add_argument('--height', type=int, default=512)
user_args = parser.parse_args()
dd = Diffuser(user_args.model_path)
dd.generate([user_args.prompt],
clip_guidance_scale=user_args.text_scale,
side_x=user_args.width,
side_y=user_args.height,
)
|