File size: 4,075 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/bin/bash
#SBATCH --job-name=afqmc # create a short name for your job
#SBATCH --nodes=1 # node count
#SBATCH --ntasks=4 # total number of tasks across all nodes
#SBATCH --cpus-per-task=20 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --gres=gpu:4 # number of gpus per node
#SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. 
#SBATCH -o %x-%j.log # output and error file name (%x=job name, %j=job id)

set -x -e
echo "START TIME: $(date)"

export TORCH_EXTENSIONS_DIR=/cognitive_comp/gaoxinyu/cache/torch_extendsions

BERT_NAME=bert-3.9B

TASK=afqmc
TEXTA_NAME=sentence1
TEXTB_NAME=sentence2
LABEL_NAME=label
ID_NAME=id


BATCH_SIZE=8
VAL_BATCH_SIZE=32
ZERO_STAGE=2
STRATEGY=deepspeed_stage_${ZERO_STAGE}

DATA_DIR=/cognitive_comp/yangping/data/ChineseCLUE_DATA/${TASK}_public/
PRETRAINED_MODEL_PATH=/cognitive_comp/gaoxinyu/pretrained_model/$BERT_NAME/


CHECKPOINT_PATH=/cognitive_comp/gaoxinyu/ln_model/fintune/ckpt/fengshen-finetune/$TASK/
DEFAULT_ROOT_DIR=/cognitive_comp/gaoxinyu/ln_model/finetune/${BERT_NAME}-${TASK}
OUTPUT_PATH=/cognitive_comp/gaoxinyu/ln_model/finetune/${BERT_NAME}-${TASK}/predict.json


config_json="./ds_config.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
# reduce_bucket_size: hidden_size*hidden_size
# stage3_prefetch_bucket_size: 0.9 * hidden_size * hidden_size
# stage3_param_persistence_threshold: 10 * hidden_size

cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $BATCH_SIZE,
  "steps_per_print": 1000,
  "gradient_clipping": 0.1,
  "zero_optimization": {
        "stage": 2
    },
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 1e-7,
      "eps": 1e-12,
      "weight_decay": 1e-1
    }
  },
  "scheduler": {
    "type": "WarmupLR",
    "params":{
      "warmup_min_lr": 1e-8,
      "warmup_max_lr": 1e-6,
      "warmup_num_steps": 400,
      "warmup_type": "linear"
    }
  },
  "zero_allow_untested_optimizer": false,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "activation_checkpointing": {
    "partition_activations": false,
    "contiguous_memory_optimization": false
  },
  "wall_clock_breakdown": false
}
EOT

export PL_DEEPSPEED_CONFIG_PATH=$config_json


DATA_ARGS="\
        --data_dir $DATA_DIR \
        --train_data train.json \
        --valid_data dev.json \
        --test_data test.json \
        --train_batchsize $BATCH_SIZE \
        --valid_batchsize $VAL_BATCH_SIZE \
        --max_length 128 \
        --texta_name $TEXTA_NAME \
        --textb_name $TEXTB_NAME \
        --label_name $LABEL_NAME \
        --id_name $ID_NAME \
        "

MODEL_ARGS="\
        --learning_rate 1e-5 \
        --weight_decay 1e-2 \
        --warmup 0.01 \
        --num_labels 2 \
        "

MODEL_CHECKPOINT_ARGS="\
        --monitor val_acc \
        --save_top_k 3 \
        --mode max \
        --every_n_train_steps 0 \
        --save_weights_only True \
        --dirpath $CHECKPOINT_PATH \
        --filename model-{epoch:02d}-{val_acc:.4f} \
        "


TRAINER_ARGS="\
        --max_epochs 67 \
        --gpus 4 \
        --num_nodes 1 \
        --strategy $STRATEGY \
        --gradient_clip_val 1.0 \
        --check_val_every_n_epoch 1 \
        --val_check_interval 100 \
        --precision 16 \
        --default_root_dir $DEFAULT_ROOT_DIR \
        "

options=" \
        --pretrained_model_path $PRETRAINED_MODEL_PATH \
        --output_save_path $OUTPUT_PATH \
        $DATA_ARGS \
        $MODEL_ARGS \
        $MODEL_CHECKPOINT_ARGS \
        $TRAINER_ARGS \
        "

DOCKER_PATH=/cognitive_comp/gaoxinyu/docker/pytorch21_06_py3_docker_image_v2.sif
SCRIPT_PATH=/cognitive_comp/gaoxinyu/github/Fengshenbang-LM/fengshen/examples/classification/finetune_classification.py

# python3 $SCRIPT_PATH $options
srun -N 1 --job-name=afqmc --jobid=151522 --ntasks=4 --cpus-per-task=15 --gres=gpu:4 -o %x-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $DOCKER_PATH python3 $SCRIPT_PATH $options