File size: 13,741 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# -*- encoding: utf-8 -*-
'''
@File    :   t5_gen_datasets.py
@Time    :   2022/10/24 19:29
@Author  :   He Junqing
@Version :   1.0
@Contact :   [email protected]
@License :   (C)Copyright 2022-2023, CCNL-IDEA
'''

from logging import exception
from transformers import (
    BertTokenizer,
    MT5Config,
    MT5Tokenizer,
    MT5ForConditionalGeneration,
)
import torch
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
import pytorch_lightning as pl
import numpy as np
import sys

sys.path.append("../../")

special_token_dict = {
    "additional_special_tokens": [
        "[CTSTART]",
        "[CTEND]",
        "[SEP]",
        "[KNSTART]",
        "[KNEND]",
    ]
}


class DialogDataset(Dataset):
    def __init__(self, data_path, args, data, load_data_type=1) -> None:
        super().__init__()

        if args.tokenizer_type == "t5_tokenizer":
            self.tokenizer = MT5Tokenizer.from_pretrained(
                args.pretrained_model_path)
            if len(self.tokenizer) == 32596:
                self.tokenizer.add_special_tokens(special_token_dict)
                print(
                    "add special tokens to tokenizer,vocab size:",
                    len(self.tokenizer)
                )
                self.model = MT5ForConditionalGeneration.from_pretrained(
                    args.pretrained_model_path
                )
                self.model.resize_token_embeddings(len(self.tokenizer))
                self.model.save_pretrained(args.new_vocab_path)
                self.tokenizer.save_pretrained(
                    args.new_vocab_path)
        else:
            self.tokenizer = BertTokenizer.from_pretrained(
                args.pretrained_model_path)

        self.load_data_type = load_data_type
        self.data_split = data
        self.num_workers = args.preprocessing_num_workers
        self.max_seq_length = args.max_seq_length
        self.max_knowledge_length = args.max_knowledge_length
        self.max_target_length = args.max_target_length

        # tokenizer config
        self.config = MT5Config.from_pretrained(args.pretrained_model_path)
        self.decoder_start_token_id = self.config.decoder_start_token_id
        self.eos_token_id = self.config.eos_token_id
        self.vocab_size = self.config.vocab_size
        # print(self.tokenizer.decode([2]))

        # load from raw data or hf dataset

        if self.load_data_type == 0:
            self.data = self.load_data(data_path)
        elif self.load_data_type == 1:
            self.data = self.load_packed_data(data_path)
        else:  # for testing
            self.data = data_path

    def load_packed_data(self, data_path):
        from fengshen.data.fs_datasets import load_dataset

        samples = load_dataset(data_path,
                               num_proc=self.num_workers)[self.data_split]
        tokenized_samples = samples.map(
            self.regular_tokenize, batched=False,
            num_proc=self.num_workers
        )

        return tokenized_samples

    def load_data(self, data_path):
        """
        load data from raw data
        return untokoenized data
        """
        from datasets import load_dataset

        ds = load_dataset("json", data_files=data_path)['train']
        samples = ds.map(self.regular_tokenize, batched=False, num_proc=self.num_workers
                         )
        return samples

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)

    def regular_tokenize(self, sample):
        # print(len(sample['context']))
        context_ids = self.tokenizer(
            sample["context"],
            add_special_tokens=True,
            return_attention_mask=False,
            return_token_type_ids=True,
        )

        context_types = self.get_token_type(
            sample["context"], context_ids["token_type_ids"]
        )
        # print('context',sample['context'])
        # print('context_ids',context_ids['input_ids'])
        knowledge_ids = self.tokenizer.encode(
            sample["knowledge"], add_special_tokens=False
        )
        # print('knowledge_ids',knowledge_ids)
        if isinstance(knowledge_ids, int):
            knowledge_ids = [knowledge_ids]
        target_ids = self.tokenizer.encode(
            sample["target"],
            add_special_tokens=False,
            max_length=self.max_target_length - 1,
            truncation=True,
        )
        # print('target',sample['target'])
        # print('target_ids',target_ids)
        # print('decode target',self.tokenizer.decode(target_ids))
        # truncate

        knowledge_ids = (
            [self.tokenizer.convert_tokens_to_ids("[KNSTART]")]
            + knowledge_ids[: self.max_knowledge_length - 2]
            + [self.tokenizer.convert_tokens_to_ids("[KNEND]")]
        )
        l_kn = len(knowledge_ids)
        knowledge_types = [2] * l_kn

        flatten_context = []
        for line in context_ids["input_ids"]:
            flatten_context.extend(line)
        l_ct = min(len(flatten_context), self.max_seq_length - l_kn - 2)
        context_ids = (
            [self.tokenizer.convert_tokens_to_ids("[CTSTART]")]
            + flatten_context[-l_ct:]
            + [self.tokenizer.convert_tokens_to_ids("[CTEND]")]
        )

        context_types = context_types[-l_ct:] + [0]
        context_types.insert(0, context_types[0])
        assert len(context_ids) == len(
            context_types
        ), "len of context ids and token types unmatch, context:{},ids:{} types:{},len {}:{}".format(
            sample["context"],
            context_ids,
            context_types,
            len(context_ids),
            len(context_types),
        )

        try:
            target_ids = target_ids + [self.eos_token_id]
        except exception:
            print(sample["target"], target_ids, self.eos_token_id)

        tokenized = {}
        tokenized["input_ids"] = np.array(context_ids + knowledge_ids, dtype=np.int32)
        tokenized["token_types"] = np.array(
            context_types + knowledge_types, dtype=np.int32
        )
        tokenized["attention_mask"] = np.ones(
            len(context_types + knowledge_types), dtype=np.int8
        )
        tokenized["labels"] = np.array(target_ids, dtype=np.int32)

        return tokenized

    def get_token_type(self, context, tokentypes=None):
        # token_type fail in tokenizer, all zero
        context_token_types = []
        for i, line in enumerate(context):
            if tokentypes:
                if i % 2 == 0:
                    token_type = [0] * len(tokentypes[i])
                else:
                    token_type = [1] * len(tokentypes[i])
            else:
                if i % 2 == 0:
                    token_type = [0] * (1 + len(line))
                else:
                    token_type = [1] * (1 + len(line))

            context_token_types.extend(token_type)

        return context_token_types


class DialogDataModel(pl.LightningDataModule):
    @staticmethod
    def add_data_specific_args(parent_args):
        parser = parent_args.add_argument_group("SuperviseT5DataModel")
        parser.add_argument("--dataset_num_workers", default=8, type=int)
        parser.add_argument("--dataloader_num_workers", default=4, type=int)
        parser.add_argument("--train_data_path", default="dialog_4g_test", type=str)
        parser.add_argument(
            "--valid_data_path", default="wudao_180g_mt5_tokenized", type=str
        )
        parser.add_argument("--train_batchsize", default=2, type=int)
        parser.add_argument("--valid_batchsize", default=2, type=int)
        parser.add_argument("--max_seq_length", default=512, type=int)
        parser.add_argument("--max_knowledge_length", default=128, type=int)
        parser.add_argument("--max_target_length", default=128, type=int)

        return parent_args

    def __init__(self, args):
        super().__init__()
        self.save_hyperparameters(args)
        self.load_data(args)
        self.epochs = args.max_epochs

    def load_data(self, args):
        if args.train_split_size is not None:
            from fengshen.data.fs_datasets import load_dataset

            data_splits = load_dataset(
                args.train_data_path, num_proc=args.dataset_num_workers
            )
            train_split = data_splits['train']
            test_split = data_splits['test']
            print('train:', train_split, '\ntest_data:', test_split)
            self.train_dataset = DialogDataset(
                args.train_data_path, args, load_data_type=1, data="train"
            )
            self.test_dataset = DialogDataset(
                args.train_data_path, args, load_data_type=1, data="test"
            )
        else:
            self.train_data = DialogDataset(
                args.train_data_path, args, load_data_type=1
            )

        self.config = MT5Config.from_pretrained(args.pretrained_model_path)
        self.pad_token_id = self.config.pad_token_id
        self.decoder_start_token_id = self.config.decoder_start_token_id
        print("bos id:", self.decoder_start_token_id)

    def collate_fn(self, samples):
        batch = {
            k: [
                torch.tensor(samples[i][k], dtype=torch.int64)
                for i in range(len(samples))
            ]
            for k in ["input_ids", "token_types", "attention_mask", "labels"]
        }

        # print(batch)
        for k, v in batch.items():
            if k != "labels":
                batch[k] = pad_sequence(
                    v, batch_first=True, padding_value=self.pad_token_id
                )
            else:
                batch[k] = pad_sequence(v, batch_first=True, padding_value=-100)
        batch["decoder_input_ids"] = torch.tensor(
            self.shift_tokens_right(
                batch["labels"], self.pad_token_id, self.decoder_start_token_id
            ),
            dtype=torch.long,
        )
        return batch

    def shift_tokens_right(
        self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
    ) -> np.ndarray:
        """
        Shift input ids one token to the right.
        """
        shifted_input_ids = np.zeros_like(input_ids)
        shifted_input_ids[:, 1:] = input_ids[:, :-1]
        shifted_input_ids[:, 0] = decoder_start_token_id

        shifted_input_ids = np.where(
            shifted_input_ids == -100, pad_token_id, shifted_input_ids
        )
        return shifted_input_ids

    def train_dataloader(self):
        from fengshen.data.universal_datamodule.universal_sampler import (
            PretrainingRandomSampler,
        )
        from fengshen.data.universal_datamodule.universal_datamodule import (
            get_consume_samples,
        )

        # 采用自定义的sampler,确保继续训练能正确取到数据
        consumed_samples = get_consume_samples(self)
        batch_sampler = PretrainingRandomSampler(
            epoch=self.epochs,
            total_samples=len(self.train_dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=self.hparams.train_batchsize,
            data_parallel_rank=self.trainer.global_rank,  # gpu idx
            data_parallel_size=self.trainer.world_size,  # gpu num
        )
        return DataLoader(
            self.train_dataset,
            batch_sampler=batch_sampler,
            pin_memory=True,
            num_workers=self.hparams.dataloader_num_workers,
            collate_fn=self.collate_fn,
        )

    def val_dataloader(self):
        sampler = torch.utils.data.distributed.DistributedSampler(
            self.test_dataset, shuffle=False
        )
        return DataLoader(
            self.test_dataset,
            sampler=sampler,
            shuffle=False,
            batch_size=self.hparams.valid_batchsize,
            pin_memory=True,
            num_workers=self.hparams.dataloader_num_workers,
            collate_fn=self.collate_fn,
        )

    def predict_dataloader(self):
        sampler = torch.utils.data.distributed.DistributedSampler(
            self.test_dataset, shuffle=False
        )
        return DataLoader(
            self.test_dataset,
            sampler=sampler,
            shuffle=False,
            batch_size=self.hparams.valid_batchsize,
            pin_memory=True,
            num_workers=self.hparams.dataloader_num_workers,
            collate_fn=self.collate_fn,
        )


if __name__ == "__main__":
    # test
    import argparse

    total_parser = argparse.ArgumentParser("DATASET parser")
    total_parser.add_argument(
        "--tokenizer_type",
        default="t5_tokenizer",
        choices=["bert_tokenizer", "t5_tokenizer"],
    )
    total_parser.add_argument("--preprocessing_num_workers", default="10", type=int)
    total_parser.add_argument(
        "--new_vocab_path",
        default="/cognitive_comp/hejunqing/projects/Dialog_pretrain/randeng_t5_newvocab_784M",
        type=str,
    )
    total_parser.add_argument("--train_split_size", default=0.995, type=int)
    total_parser.add_argument(
        "--pretrained_model_path",
        default="/cognitive_comp/hejunqing/projects/Dialog_pretrain/randeng_t5_newvocab_784M",
    )
    total_parser = DialogDataModel.add_data_specific_args(total_parser)
    args = total_parser.parse_args()
    dl = DialogDataModel(args)

    for i in range(5):
        for batch in dl.train_dataloader():
            print(batch)
            print(batch["input_ids"])
            print(batch["token_types"])
            print(batch["decoder_input_ids"])
            print(batch["labels"])

    print("test finish")