File size: 13,741 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# -*- encoding: utf-8 -*-
'''
@File : t5_gen_datasets.py
@Time : 2022/10/24 19:29
@Author : He Junqing
@Version : 1.0
@Contact : [email protected]
@License : (C)Copyright 2022-2023, CCNL-IDEA
'''
from logging import exception
from transformers import (
BertTokenizer,
MT5Config,
MT5Tokenizer,
MT5ForConditionalGeneration,
)
import torch
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
import pytorch_lightning as pl
import numpy as np
import sys
sys.path.append("../../")
special_token_dict = {
"additional_special_tokens": [
"[CTSTART]",
"[CTEND]",
"[SEP]",
"[KNSTART]",
"[KNEND]",
]
}
class DialogDataset(Dataset):
def __init__(self, data_path, args, data, load_data_type=1) -> None:
super().__init__()
if args.tokenizer_type == "t5_tokenizer":
self.tokenizer = MT5Tokenizer.from_pretrained(
args.pretrained_model_path)
if len(self.tokenizer) == 32596:
self.tokenizer.add_special_tokens(special_token_dict)
print(
"add special tokens to tokenizer,vocab size:",
len(self.tokenizer)
)
self.model = MT5ForConditionalGeneration.from_pretrained(
args.pretrained_model_path
)
self.model.resize_token_embeddings(len(self.tokenizer))
self.model.save_pretrained(args.new_vocab_path)
self.tokenizer.save_pretrained(
args.new_vocab_path)
else:
self.tokenizer = BertTokenizer.from_pretrained(
args.pretrained_model_path)
self.load_data_type = load_data_type
self.data_split = data
self.num_workers = args.preprocessing_num_workers
self.max_seq_length = args.max_seq_length
self.max_knowledge_length = args.max_knowledge_length
self.max_target_length = args.max_target_length
# tokenizer config
self.config = MT5Config.from_pretrained(args.pretrained_model_path)
self.decoder_start_token_id = self.config.decoder_start_token_id
self.eos_token_id = self.config.eos_token_id
self.vocab_size = self.config.vocab_size
# print(self.tokenizer.decode([2]))
# load from raw data or hf dataset
if self.load_data_type == 0:
self.data = self.load_data(data_path)
elif self.load_data_type == 1:
self.data = self.load_packed_data(data_path)
else: # for testing
self.data = data_path
def load_packed_data(self, data_path):
from fengshen.data.fs_datasets import load_dataset
samples = load_dataset(data_path,
num_proc=self.num_workers)[self.data_split]
tokenized_samples = samples.map(
self.regular_tokenize, batched=False,
num_proc=self.num_workers
)
return tokenized_samples
def load_data(self, data_path):
"""
load data from raw data
return untokoenized data
"""
from datasets import load_dataset
ds = load_dataset("json", data_files=data_path)['train']
samples = ds.map(self.regular_tokenize, batched=False, num_proc=self.num_workers
)
return samples
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
def regular_tokenize(self, sample):
# print(len(sample['context']))
context_ids = self.tokenizer(
sample["context"],
add_special_tokens=True,
return_attention_mask=False,
return_token_type_ids=True,
)
context_types = self.get_token_type(
sample["context"], context_ids["token_type_ids"]
)
# print('context',sample['context'])
# print('context_ids',context_ids['input_ids'])
knowledge_ids = self.tokenizer.encode(
sample["knowledge"], add_special_tokens=False
)
# print('knowledge_ids',knowledge_ids)
if isinstance(knowledge_ids, int):
knowledge_ids = [knowledge_ids]
target_ids = self.tokenizer.encode(
sample["target"],
add_special_tokens=False,
max_length=self.max_target_length - 1,
truncation=True,
)
# print('target',sample['target'])
# print('target_ids',target_ids)
# print('decode target',self.tokenizer.decode(target_ids))
# truncate
knowledge_ids = (
[self.tokenizer.convert_tokens_to_ids("[KNSTART]")]
+ knowledge_ids[: self.max_knowledge_length - 2]
+ [self.tokenizer.convert_tokens_to_ids("[KNEND]")]
)
l_kn = len(knowledge_ids)
knowledge_types = [2] * l_kn
flatten_context = []
for line in context_ids["input_ids"]:
flatten_context.extend(line)
l_ct = min(len(flatten_context), self.max_seq_length - l_kn - 2)
context_ids = (
[self.tokenizer.convert_tokens_to_ids("[CTSTART]")]
+ flatten_context[-l_ct:]
+ [self.tokenizer.convert_tokens_to_ids("[CTEND]")]
)
context_types = context_types[-l_ct:] + [0]
context_types.insert(0, context_types[0])
assert len(context_ids) == len(
context_types
), "len of context ids and token types unmatch, context:{},ids:{} types:{},len {}:{}".format(
sample["context"],
context_ids,
context_types,
len(context_ids),
len(context_types),
)
try:
target_ids = target_ids + [self.eos_token_id]
except exception:
print(sample["target"], target_ids, self.eos_token_id)
tokenized = {}
tokenized["input_ids"] = np.array(context_ids + knowledge_ids, dtype=np.int32)
tokenized["token_types"] = np.array(
context_types + knowledge_types, dtype=np.int32
)
tokenized["attention_mask"] = np.ones(
len(context_types + knowledge_types), dtype=np.int8
)
tokenized["labels"] = np.array(target_ids, dtype=np.int32)
return tokenized
def get_token_type(self, context, tokentypes=None):
# token_type fail in tokenizer, all zero
context_token_types = []
for i, line in enumerate(context):
if tokentypes:
if i % 2 == 0:
token_type = [0] * len(tokentypes[i])
else:
token_type = [1] * len(tokentypes[i])
else:
if i % 2 == 0:
token_type = [0] * (1 + len(line))
else:
token_type = [1] * (1 + len(line))
context_token_types.extend(token_type)
return context_token_types
class DialogDataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group("SuperviseT5DataModel")
parser.add_argument("--dataset_num_workers", default=8, type=int)
parser.add_argument("--dataloader_num_workers", default=4, type=int)
parser.add_argument("--train_data_path", default="dialog_4g_test", type=str)
parser.add_argument(
"--valid_data_path", default="wudao_180g_mt5_tokenized", type=str
)
parser.add_argument("--train_batchsize", default=2, type=int)
parser.add_argument("--valid_batchsize", default=2, type=int)
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--max_knowledge_length", default=128, type=int)
parser.add_argument("--max_target_length", default=128, type=int)
return parent_args
def __init__(self, args):
super().__init__()
self.save_hyperparameters(args)
self.load_data(args)
self.epochs = args.max_epochs
def load_data(self, args):
if args.train_split_size is not None:
from fengshen.data.fs_datasets import load_dataset
data_splits = load_dataset(
args.train_data_path, num_proc=args.dataset_num_workers
)
train_split = data_splits['train']
test_split = data_splits['test']
print('train:', train_split, '\ntest_data:', test_split)
self.train_dataset = DialogDataset(
args.train_data_path, args, load_data_type=1, data="train"
)
self.test_dataset = DialogDataset(
args.train_data_path, args, load_data_type=1, data="test"
)
else:
self.train_data = DialogDataset(
args.train_data_path, args, load_data_type=1
)
self.config = MT5Config.from_pretrained(args.pretrained_model_path)
self.pad_token_id = self.config.pad_token_id
self.decoder_start_token_id = self.config.decoder_start_token_id
print("bos id:", self.decoder_start_token_id)
def collate_fn(self, samples):
batch = {
k: [
torch.tensor(samples[i][k], dtype=torch.int64)
for i in range(len(samples))
]
for k in ["input_ids", "token_types", "attention_mask", "labels"]
}
# print(batch)
for k, v in batch.items():
if k != "labels":
batch[k] = pad_sequence(
v, batch_first=True, padding_value=self.pad_token_id
)
else:
batch[k] = pad_sequence(v, batch_first=True, padding_value=-100)
batch["decoder_input_ids"] = torch.tensor(
self.shift_tokens_right(
batch["labels"], self.pad_token_id, self.decoder_start_token_id
),
dtype=torch.long,
)
return batch
def shift_tokens_right(
self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
) -> np.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros_like(input_ids)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
shifted_input_ids = np.where(
shifted_input_ids == -100, pad_token_id, shifted_input_ids
)
return shifted_input_ids
def train_dataloader(self):
from fengshen.data.universal_datamodule.universal_sampler import (
PretrainingRandomSampler,
)
from fengshen.data.universal_datamodule.universal_datamodule import (
get_consume_samples,
)
# 采用自定义的sampler,确保继续训练能正确取到数据
consumed_samples = get_consume_samples(self)
batch_sampler = PretrainingRandomSampler(
epoch=self.epochs,
total_samples=len(self.train_dataset),
consumed_samples=consumed_samples,
micro_batch_size=self.hparams.train_batchsize,
data_parallel_rank=self.trainer.global_rank, # gpu idx
data_parallel_size=self.trainer.world_size, # gpu num
)
return DataLoader(
self.train_dataset,
batch_sampler=batch_sampler,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
sampler = torch.utils.data.distributed.DistributedSampler(
self.test_dataset, shuffle=False
)
return DataLoader(
self.test_dataset,
sampler=sampler,
shuffle=False,
batch_size=self.hparams.valid_batchsize,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
def predict_dataloader(self):
sampler = torch.utils.data.distributed.DistributedSampler(
self.test_dataset, shuffle=False
)
return DataLoader(
self.test_dataset,
sampler=sampler,
shuffle=False,
batch_size=self.hparams.valid_batchsize,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
if __name__ == "__main__":
# test
import argparse
total_parser = argparse.ArgumentParser("DATASET parser")
total_parser.add_argument(
"--tokenizer_type",
default="t5_tokenizer",
choices=["bert_tokenizer", "t5_tokenizer"],
)
total_parser.add_argument("--preprocessing_num_workers", default="10", type=int)
total_parser.add_argument(
"--new_vocab_path",
default="/cognitive_comp/hejunqing/projects/Dialog_pretrain/randeng_t5_newvocab_784M",
type=str,
)
total_parser.add_argument("--train_split_size", default=0.995, type=int)
total_parser.add_argument(
"--pretrained_model_path",
default="/cognitive_comp/hejunqing/projects/Dialog_pretrain/randeng_t5_newvocab_784M",
)
total_parser = DialogDataModel.add_data_specific_args(total_parser)
args = total_parser.parse_args()
dl = DialogDataModel(args)
for i in range(5):
for batch in dl.train_dataloader():
print(batch)
print(batch["input_ids"])
print(batch["token_types"])
print(batch["decoder_input_ids"])
print(batch["labels"])
print("test finish")
|