File size: 26,198 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
# coding=utf8
import json
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from transformers import BertTokenizer, MT5Config, MT5Tokenizer, BatchEncoding
import torch
import pytorch_lightning as pl
import numpy as np
from itertools import chain
import sys
sys.path.append('../../')
def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
"""This function is copy of `random_spans_helper <https://github.com/google-research/
text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .
Training parameters to avoid padding with random_spans_noise_mask.
When training a model with random_spans_noise_mask, we would like to set the other
training hyperparmeters in a way that avoids padding.
This function helps us compute these hyperparameters.
We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
This function tells us the required number of tokens in the raw example (for split_tokens())
as well as the length of the encoded targets. Note that this function assumes
the inputs and targets will have EOS appended and includes that in the reported length.
Args:
inputs_length: an integer - desired length of the tokenized inputs sequence
noise_density: a float
mean_noise_span_length: a float
Returns:
tokens_length: length of original text in tokens
targets_length: an integer - length in tokens of encoded targets sequence
"""
def _tokens_length_to_inputs_length_targets_length(tokens_length):
num_noise_tokens = int(round(tokens_length * noise_density))
num_nonnoise_tokens = tokens_length - num_noise_tokens
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
# inputs contain all nonnoise tokens, sentinels for all noise spans
# and one EOS token.
_input_length = num_nonnoise_tokens + num_noise_spans + 1
_output_length = num_noise_tokens + num_noise_spans + 1
return _input_length, _output_length
tokens_length = inputs_length
while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
tokens_length += 1
inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(
tokens_length)
# minor hack to get the targets length to be equal to inputs length
# which is more likely to have been set to a nice round number.
if noise_density == 0.5 and targets_length > inputs_length:
tokens_length -= 1
targets_length -= 1
return tokens_length, targets_length
class UnsuperviseT5Dataset(Dataset):
'''
Dataset Used for T5 unsuprvise pretrain.
load_data_type = 0: load raw data from data path and save tokenized data, call function load_data
load_data_type = 1: load tokenized data from path, call function load_tokenized_data
load_data_type = 2: load tokenized data from memery data, call function load_tokenized_memory_data
'''
def __init__(self, data_path, args, load_data_type=0, data=None):
super().__init__()
if args.tokenizer_type == 't5_tokenizer':
if args.new_vocab_path is not None:
self.tokenizer = MT5Tokenizer.from_pretrained(args.new_vocab_path)
else:
self.tokenizer = MT5Tokenizer.from_pretrained(args.pretrained_model_path)
else:
self.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_path)
self.noise_density = 0.15
self.mean_noise_span_length = 3
self.text_column_name = args.text_column_name
self.dataset_num_workers = args.dataset_num_workers
self.max_seq_length = args.max_seq_length
self.remove_columns = args.remove_columns
# whether load tokenieze data
self.load_data_type = load_data_type
if self.load_data_type == 0:
# T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
# To ensure that the input length is `max_seq_length`, we need to increase the maximum length
# according to `mlm_probability` and `mean_noise_span_length`.
# We can also define the label length accordingly.
self.expanded_inputs_length, self.targets_length = compute_input_and_target_lengths(
inputs_length=self.max_seq_length,
noise_density=self.noise_density,
mean_noise_span_length=self.mean_noise_span_length,
)
print('self.expanded_inputs_length, self.targets_length:{},{}'.format(
self.expanded_inputs_length, self.targets_length))
self.data = self.load_data(data_path)
elif self.load_data_type == 1:
self.data = self.load_tokenized_data(data_path)
else:
assert data is not None
self.data = self.load_tokenized_memory_data(data)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def load_data(self, data_path):
# TODO: large data process
from data.fs_datasets import load_dataset
samples = load_dataset(
# samples = datasets.load_from_disk(data_path)['train']
data_path, num_proc=self.dataset_num_workers)['train']
# print(samples)
tokenized_datasets = samples.map(
self.tokenize_function,
batched=True,
num_proc=self.dataset_num_workers,
# load_from_cache_file=not data_args.overwrite_cache,
).map(
batched=True,
num_proc=self.dataset_num_workers,
remove_columns=self.remove_columns)
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
# might be slower to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
tokenized_datasets = tokenized_datasets.map(
self.group_texts,
batched=True,
num_proc=self.dataset_num_workers,
# load_from_cache_file=not data_args.overwrite_cache,
)
return tokenized_datasets
'''
The function load tokenized data saved from load_data function.
'''
def load_tokenized_data(self, data_path):
from data.fs_datasets import load_dataset
samples = load_dataset(data_path)['train']
return samples
def load_tokenized_memory_data(self, data):
return data
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# Since we make sure that all sequences are of the same length, no attention_mask is needed.
def tokenize_function(self, examples):
# 这里add_special_tokens=False,避免句子中间出现eos
return self.tokenizer(examples[self.text_column_name],
add_special_tokens=False,
return_attention_mask=False)
# Main data processing function that will concatenate all texts from our dataset
# and generate chunks of expanded_inputs_length.
def group_texts(self, examples):
# Concatenate all texts.
concatenated_examples = {
k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= self.expanded_inputs_length:
total_length = (
total_length // self.expanded_inputs_length) * self.expanded_inputs_length
# Split by chunks of max_len.
result = {
k: [t[i: i + self.expanded_inputs_length]
for i in range(0, total_length, self.expanded_inputs_length)]
for k, t in concatenated_examples.items()
}
return result
class UnsuperviseT5DataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('UnsuperviseT5DataModel')
parser.add_argument('--dataset_num_workers', default=8, type=int)
parser.add_argument('--dataloader_num_workers', default=4, type=int)
parser.add_argument(
'--train_data_path', default='wudao_180g_mt5_tokenized', type=str)
parser.add_argument('--train_batchsize', default=2, type=int)
parser.add_argument('--valid_batchsize', default=2, type=int)
parser.add_argument('--train_split_size', default=None, type=float)
parser.add_argument('--tokenizer_type', default='t5_tokenizer', choices=['t5_tokenizer', 'bert_tokenizer'])
parser.add_argument('--text_column_name', default='text')
parser.add_argument('--remove_columns', nargs='+', default=[])
return parent_args
def __init__(self, args):
super().__init__()
self.save_hyperparameters(args)
if args.train_split_size is not None:
from data.fs_datasets import load_dataset
data_splits = load_dataset(args.train_data_path, num_proc=args.dataset_num_workers)
train_split = data_splits['train']
test_split = data_splits['test']
print('train:', train_split, '\ntest_data:', test_split)
self.train_dataset = UnsuperviseT5Dataset('', args, load_data_type=2, data=train_split)
self.test_dataset = UnsuperviseT5Dataset('', args, load_data_type=2, data=test_split)
else:
self.train_data = UnsuperviseT5Dataset(args.train_data_path, args, load_data_type=1)
self.config = MT5Config.from_pretrained(args.pretrained_model_path)
self.noise_density = 0.15
self.mean_noise_span_length = 3
self.pad_token_id = self.config.pad_token_id
self.decoder_start_token_id = self.config.decoder_start_token_id
self.eos_token_id = self.config.eos_token_id
self.vocab_size = self.config.vocab_size
self.max_seq_length = args.max_seq_length
# 因为加载旧的spm里面已经包括了exrta_ids,但是T5Tokenizer会在spm的基础上再增加100个extra_ids,所以需要指定extra_ids=0
if args.tokenizer_type == 't5_tokenizer' and args.new_vocab_path is not None:
self.tokenizer = MT5Tokenizer.from_pretrained(args.new_vocab_path, extra_ids=0)
# 如果是刚开始加载mt5,需要更新vocab_size为提取中英词之后的new_vocab_size
self.vocab_size = len(self.tokenizer)
# T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
# To ensure that the input length is `max_seq_length`, we need to increase the maximum length
# according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
self.expanded_inputs_length, self.targets_length = compute_input_and_target_lengths(
inputs_length=self.max_seq_length,
noise_density=self.noise_density,
mean_noise_span_length=self.mean_noise_span_length,
)
def train_dataloader(self):
from fengshen.data.universal_datamodule.universal_sampler import PretrainingSampler
from fengshen.data.universal_datamodule.universal_datamodule import get_consume_samples
# 采用自定义的sampler,确保继续训练能正确取到数据
consumed_samples = get_consume_samples(self)
batch_sampler = PretrainingSampler(
total_samples=len(self.train_dataset),
consumed_samples=consumed_samples,
micro_batch_size=self.hparams.train_batchsize,
data_parallel_rank=self.trainer.global_rank,
data_parallel_size=self.trainer.world_size,
)
return DataLoader(
self.train_dataset,
batch_sampler=batch_sampler,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
sampler = torch.utils.data.distributed.DistributedSampler(
self.test_dataset, shuffle=False)
return DataLoader(
self.test_dataset,
sampler=sampler,
shuffle=False,
batch_size=self.hparams.valid_batchsize,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
def predict_dataloader(self):
sampler = torch.utils.data.distributed.DistributedSampler(
self.test_dataset, shuffle=False)
return DataLoader(
self.test_data,
sampler=sampler,
shuffle=False,
batch_size=self.hparams.valid_batchsize,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers,
collate_fn=self.collate_fn,
)
def collate_fn(self, examples):
# convert list to dict and tensorize input
batch = BatchEncoding(
{k: np.array([examples[i][k] for i in range(len(examples))])
for k, v in examples[0].items()}
)
input_ids = np.array(batch['input_ids'])
batch_size, expanded_input_length = input_ids.shape
mask_indices = np.asarray([self.random_spans_noise_mask(
expanded_input_length) for i in range(batch_size)])
labels_mask = ~mask_indices
input_ids_sentinel = self.create_sentinel_ids(
mask_indices.astype(np.int8))
labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))
batch["input_ids"] = self.filter_input_ids(
input_ids, input_ids_sentinel)
batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)
if batch["input_ids"].shape[-1] != self.max_seq_length:
raise ValueError(
f"`input_ids` are incorrectly preprocessed. `input_ids` length is \
{batch['input_ids'].shape[-1]}, but should be {self.targets_length}."
)
if batch["labels"].shape[-1] != self.targets_length:
raise ValueError(
f"`labels` are incorrectly preprocessed. `labels` length is \
{batch['labels'].shape[-1]}, but should be {self.targets_length}."
)
batch["decoder_input_ids"] = self.shift_tokens_right(
batch["labels"], self.pad_token_id, self.decoder_start_token_id
)
for k, v in batch.items():
batch[k] = torch.tensor(v)
# print(k, batch[k], self.tokenizer.batch_decode(batch[k]), '\n', flush=True)
return batch
def create_sentinel_ids(self, mask_indices):
"""
Sentinel ids creation given the indices that should be masked.
The start indices of each mask are replaced by the sentinel ids in increasing
order. Consecutive mask indices to be deleted are replaced with `-1`.
"""
start_indices = mask_indices - \
np.roll(mask_indices, 1, axis=-1) * mask_indices
start_indices[:, 0] = mask_indices[:, 0]
sentinel_ids = np.where(start_indices != 0, np.cumsum(
start_indices, axis=-1), start_indices)
sentinel_ids = np.where(
sentinel_ids != 0, (self.vocab_size - sentinel_ids), 0)
sentinel_ids -= mask_indices - start_indices
return sentinel_ids
def filter_input_ids(self, input_ids, sentinel_ids):
"""
Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
"""
batch_size = input_ids.shape[0]
input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
# input_ids tokens and sentinel tokens are >= 0, tokens < 0 are
# masked tokens coming after sentinel tokens and should be removed
input_ids = input_ids_full[input_ids_full >=
0].reshape((batch_size, -1))
input_ids = np.concatenate(
[input_ids, np.full((batch_size, 1), self.eos_token_id, dtype=np.int32)], axis=-1
)
return input_ids
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros_like(input_ids)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
shifted_input_ids = np.where(
shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
def random_spans_noise_mask(self, length):
"""This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/
blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .
Noise mask consisting of random spans of noise tokens.
The number of noise tokens and the number of noise spans and non-noise spans
are determined deterministically as follows:
num_noise_tokens = round(length * noise_density)
num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
Spans alternate between non-noise and noise, beginning with non-noise.
Subject to the above restrictions, all masks are equally likely.
Args:
length: an int32 scalar (length of the incoming token sequence)
noise_density: a float - approximate density of output mask
mean_noise_span_length: a number
Returns:
a boolean tensor with shape [length]
"""
orig_length = length
num_noise_tokens = int(np.round(length * self.noise_density))
# avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
num_noise_spans = int(
np.round(num_noise_tokens / self.mean_noise_span_length))
# avoid degeneracy by ensuring positive number of noise spans
num_noise_spans = max(num_noise_spans, 1)
num_nonnoise_tokens = length - num_noise_tokens
# pick the lengths of the noise spans and the non-noise spans
def _random_segmentation(num_items, num_segments):
"""Partition a sequence of items randomly into non-empty segments.
Args:
num_items: an integer scalar > 0
num_segments: an integer scalar in [1, num_items]
Returns:
a Tensor with shape [num_segments] containing positive integers that add
up to num_items
"""
mask_indices = np.arange(num_items - 1) < (num_segments - 1)
np.random.shuffle(mask_indices)
first_in_segment = np.pad(mask_indices, [[1, 0]])
segment_id = np.cumsum(first_in_segment)
# count length of sub segments assuming that list is sorted
_, segment_length = np.unique(segment_id, return_counts=True)
return segment_length
noise_span_lengths = _random_segmentation(
num_noise_tokens, num_noise_spans)
nonnoise_span_lengths = _random_segmentation(
num_nonnoise_tokens, num_noise_spans)
interleaved_span_lengths = np.reshape(
np.stack([nonnoise_span_lengths, noise_span_lengths],
axis=1), [num_noise_spans * 2]
)
span_starts = np.cumsum(interleaved_span_lengths)[:-1]
span_start_indicator = np.zeros((length,), dtype=np.int8)
span_start_indicator[span_starts] = True
span_num = np.cumsum(span_start_indicator)
is_noise = np.equal(span_num % 2, 1)
return is_noise[:orig_length]
class TaskT5Dataset(Dataset):
def __init__(self, data_path, args):
super().__init__()
self.max_length = args.max_seq_length
if args.tokenizer_type == 't5_tokenizer':
self.tokenizer = MT5Tokenizer.from_pretrained(args.pretrained_model_path)
else:
self.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_path)
self.data = self.load_data(data_path)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.encode(self.data[index])
def load_data(self, data_path):
samples = []
with open(data_path, 'r', encoding='utf8') as f:
lines = f.readlines()
for line in tqdm(lines):
samples.append(json.loads(line))
return samples
def encode(self, item):
if item["textb"] != "":
text = item['question'] + ','.join(item['choice'])+'。' + f"""{item["texta"]}""" + f"""{item["textb"]}"""
else:
text = f"""{item["question"]}""" + ",".join(item["choice"]) + "。" + f"""{item["texta"]}"""
label = item['answer']
encode_dict = self.tokenizer.encode_plus(text, max_length=self.max_length, padding='max_length',
truncation=True, return_tensors='pt')
decode_dict = self.tokenizer.encode_plus(label, max_length=16, padding='max_length',
truncation=True)
answer_token = []
max_label_len = 0
choice_encode = [] # 用来确定模型生成的最大长度
for a in item['choice']:
answer_encode = self.tokenizer.encode(a)
choice_encode.append(answer_encode)
if len(answer_encode) > max_label_len:
max_label_len = len(answer_encode)
for an in answer_encode:
if an not in answer_token:
answer_token.append(an)
# bad_words_ids = [[i] for i in range(self.tokenizer.vocab_size) if i not in answer_token] #不生成这些token
# while len(bad_words_ids)<self.tokenizer.vocab_size:
# bad_words_ids.append(bad_words_ids[0])
# bad_words_ids = [[423],[67],[878]]
encode_sent = encode_dict['input_ids'].squeeze()
attention_mask = encode_dict['attention_mask'].squeeze()
target = decode_dict['input_ids']
labels = torch.tensor(target)
labels[target == self.tokenizer.pad_token_id] = -100
return {
"input_ids": torch.tensor(encode_sent).long(),
"attention_mask": torch.tensor(attention_mask).float(),
"labels": torch.tensor(target).long(),
"force_words_ids": answer_token,
}
class TaskT5DataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('TaskT5DataModel')
parser.add_argument('--dataset_num_workers', default=8, type=int)
parser.add_argument('--dataloader_num_workers', default=4, type=int)
parser.add_argument(
'--train_data_path', default='wudao_180g_mt5_tokenized', type=str)
parser.add_argument(
'--valid_data_path', default='wudao_180g_mt5_tokenized', type=str)
parser.add_argument('--train_batchsize', default=2, type=int)
parser.add_argument('--valid_batchsize', default=2, type=int)
parser.add_argument('--train_split_size', default=None, type=float)
parser.add_argument('--tokenizer_type', default='t5_tokenizer', choices=['t5_tokenizer', 'bert_tokenizer'])
parser.add_argument('--text_column_name', default='text')
parser.add_argument('--remove_columns', nargs='+', default=[])
return parent_args
def __init__(self, args):
super().__init__()
self.save_hyperparameters(args)
self.train_dataset = TaskT5Dataset(args.train_data_path, args)
self.valid_dataset = TaskT5Dataset(args.valid_data_path, args)
def train_dataloader(self):
from fengshen.data.universal_datamodule.universal_sampler import PretrainingSampler
from fengshen.data.universal_datamodule.universal_datamodule import get_consume_samples
# 采用自定义的sampler,确保继续训练能正确取到数据
consumed_samples = get_consume_samples(self)
# batch_sampler = PretrainingRandomSampler(
batch_sampler = PretrainingSampler(
total_samples=len(self.train_dataset),
consumed_samples=consumed_samples,
micro_batch_size=self.hparams.train_batchsize,
data_parallel_rank=self.trainer.global_rank,
data_parallel_size=self.trainer.world_size,
)
# epoch=self.trainer.current_epoch
# )
return DataLoader(
self.train_dataset,
batch_sampler=batch_sampler,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers
)
def val_dataloader(self):
sampler = torch.utils.data.distributed.DistributedSampler(
self.valid_dataset, shuffle=False)
return DataLoader(
self.valid_dataset,
sampler=sampler,
shuffle=False,
batch_size=self.hparams.valid_batchsize,
pin_memory=True,
num_workers=self.hparams.dataloader_num_workers
)
|