import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np model_name = "dancrvlh/Language" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) mapping = { 2:"English", 3:"French", 4:"Portugeese", 5:"Russian", 6:"Sweedish", 7:"Sweedish", } def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predictions = outputs.logits return mapping[round(np.exp(predictions.item()))] iface = gr.Interface( fn=predict, inputs="text", outputs="text", layout="vertical", title="Language Detection", description="This model can detect the language your text for English, French, Portugeese, Russian, Sweedish and Unknow", ) iface.launch(share=True)