Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,94 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import math
|
4 |
import torch
|
@@ -331,10 +421,10 @@ class MemoryEfficientMoE(nn.Module):
|
|
331 |
# 7) Enhanced Transformer Block with Hybrid Attention & DeepNorm
|
332 |
# ------------------------------------------------------------------------
|
333 |
class EnhancedHybridBlock(nn.Module):
|
334 |
-
"
|
335 |
Transformer block with hybrid attention and DeepNorm residual scaling.
|
336 |
Depending on `attn_type`, it uses either lightning attention or (placeholder) softmax attention.
|
337 |
-
"
|
338 |
def __init__(self, config: MiniMaxConfig, layer_idx: int, attn_type: str = "lightning"):
|
339 |
super().__init__()
|
340 |
self.config = config
|
@@ -520,7 +610,7 @@ encoding = tiktoken.Encoding(
|
|
520 |
)
|
521 |
|
522 |
pad_token_id = special_tokens_dict["<|pad|>"]
|
523 |
-
|
524 |
global model
|
525 |
if model is not None:
|
526 |
return model
|
@@ -590,7 +680,7 @@ async def chat_endpoint(request: ChatRequest):
|
|
590 |
response_text = generate_response(request.messages)
|
591 |
return ChatResponse(response=response_text)
|
592 |
except Exception as e:
|
593 |
-
return {"error": str(e)}
|
594 |
# ---------------------------
|
595 |
def load_model(model_dir="./"):
|
596 |
global model
|
@@ -672,7 +762,7 @@ app.add_middleware(
|
|
672 |
allow_headers=["*"],
|
673 |
)
|
674 |
def get_device():
|
675 |
-
""
|
676 |
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
677 |
# Global model variable
|
678 |
model_config = MiniMaxConfig(
|
@@ -704,7 +794,7 @@ class ChatResponse(BaseModel):
|
|
704 |
status: str = "success"
|
705 |
|
706 |
async def ensure_model_loaded():
|
707 |
-
|
708 |
global model
|
709 |
if model is None:
|
710 |
try:
|
@@ -744,7 +834,7 @@ async def chat_endpoint(request: ChatRequest):
|
|
744 |
|
745 |
@app.get("/api/health")
|
746 |
async def health_check():
|
747 |
-
"
|
748 |
return {"status": "healthy"}
|
749 |
|
750 |
import gradio as gr
|
@@ -803,3 +893,4 @@ app = gr.mount_gradio_app(app, iface, path="/")
|
|
803 |
|
804 |
if __name__ == "__main__":
|
805 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
import logging
|
7 |
+
import gradio as gr
|
8 |
+
import uvicorn
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
+
|
24 |
+
MODEL_ID = "tugstugi/Qwen2.5-Coder-0.5B-QwQ-draft"
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID).to(device)
|
29 |
+
|
30 |
+
class ChatMessage(BaseModel):
|
31 |
+
role: str
|
32 |
+
content: str
|
33 |
+
|
34 |
+
class ChatRequest(BaseModel):
|
35 |
+
messages: list[ChatMessage]
|
36 |
+
|
37 |
+
class ChatResponse(BaseModel):
|
38 |
+
response: str
|
39 |
+
status: str = "success"
|
40 |
+
|
41 |
+
def build_prompt(messages):
|
42 |
+
prompt = ""
|
43 |
+
for message in messages:
|
44 |
+
if message["role"] == "user":
|
45 |
+
prompt += f"<|im_start|>user\n{message['content']}<|im_end|>\n"
|
46 |
+
elif message["role"] == "assistant":
|
47 |
+
prompt += f"<|im_start|>assistant\n{message['content']}<|im_end|>\n"
|
48 |
+
prompt += "<|im_start|>assistant\n"
|
49 |
+
return prompt
|
50 |
+
|
51 |
+
def generate_response(conversation_history, max_new_tokens=150):
|
52 |
+
prompt_text = build_prompt(conversation_history)
|
53 |
+
|
54 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to(device)
|
55 |
+
|
56 |
+
generated_ids = model.generate(
|
57 |
+
**inputs,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
do_sample=True,
|
60 |
+
temperature=0.8,
|
61 |
+
top_p=0.95,
|
62 |
+
pad_token_id=tokenizer.eos_token_id
|
63 |
+
)
|
64 |
+
|
65 |
+
generated_text = tokenizer.decode(generated_ids[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
|
66 |
+
|
67 |
+
return generated_text.strip()
|
68 |
+
|
69 |
+
@app.post("/api/chat", response_model=ChatResponse)
|
70 |
+
async def chat_endpoint(request: ChatRequest):
|
71 |
+
try:
|
72 |
+
conversation = [{"role": msg.role, "content": msg.content} for msg in request.messages]
|
73 |
+
response_text = generate_response(conversation)
|
74 |
+
return ChatResponse(response=response_text)
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error: {str(e)}")
|
77 |
+
raise HTTPException(status_code=500, detail=str(e))
|
78 |
+
|
79 |
+
@app.get("/api/health")
|
80 |
+
async def health_check():
|
81 |
+
return {"status": "healthy"}
|
82 |
+
|
83 |
+
# Gradio setup
|
84 |
+
iface = gr.Interface(fn=lambda input: generate_response([{"role": "user", "content": input}]),
|
85 |
+
inputs="text", outputs="text")
|
86 |
+
app = gr.mount_gradio_app(app, iface, path="/")
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
90 |
+
|
91 |
+
"""#STABLE ARCHITECTURE
|
92 |
|
93 |
import math
|
94 |
import torch
|
|
|
421 |
# 7) Enhanced Transformer Block with Hybrid Attention & DeepNorm
|
422 |
# ------------------------------------------------------------------------
|
423 |
class EnhancedHybridBlock(nn.Module):
|
424 |
+
"
|
425 |
Transformer block with hybrid attention and DeepNorm residual scaling.
|
426 |
Depending on `attn_type`, it uses either lightning attention or (placeholder) softmax attention.
|
427 |
+
"
|
428 |
def __init__(self, config: MiniMaxConfig, layer_idx: int, attn_type: str = "lightning"):
|
429 |
super().__init__()
|
430 |
self.config = config
|
|
|
610 |
)
|
611 |
|
612 |
pad_token_id = special_tokens_dict["<|pad|>"]
|
613 |
+
def load_model(model_dir="./"):
|
614 |
global model
|
615 |
if model is not None:
|
616 |
return model
|
|
|
680 |
response_text = generate_response(request.messages)
|
681 |
return ChatResponse(response=response_text)
|
682 |
except Exception as e:
|
683 |
+
return {"error": str(e)}
|
684 |
# ---------------------------
|
685 |
def load_model(model_dir="./"):
|
686 |
global model
|
|
|
762 |
allow_headers=["*"],
|
763 |
)
|
764 |
def get_device():
|
765 |
+
""Return GPU device if available, else CPU.
|
766 |
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
767 |
# Global model variable
|
768 |
model_config = MiniMaxConfig(
|
|
|
794 |
status: str = "success"
|
795 |
|
796 |
async def ensure_model_loaded():
|
797 |
+
Ensure model is loaded before processing requests"
|
798 |
global model
|
799 |
if model is None:
|
800 |
try:
|
|
|
834 |
|
835 |
@app.get("/api/health")
|
836 |
async def health_check():
|
837 |
+
"Health check endpoint""
|
838 |
return {"status": "healthy"}
|
839 |
|
840 |
import gradio as gr
|
|
|
893 |
|
894 |
if __name__ == "__main__":
|
895 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
896 |
+
"""
|