Spaces:
No application file
No application file
File size: 29,280 Bytes
9570ec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
#STABLE ARCHITECTURE
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from typing import Optional, Tuple
from dataclasses import dataclass
import tiktoken
import os
import json
import gradio as gr
#from fastapi import FastAPI
#from pydantic import BaseModel
#from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import logging
from fastapi import FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional
#import torch
#import uvicorn
# ------------------------------------------------------------------------
# 1) CONFIGURATION
# ------------------------------------------------------------------------
@dataclass
class MiniMaxConfig:
# Basic GPT parameters
n_layer: int = 12
n_head: int = 8
n_embd: int = 512
vocab_size: int = 200000
block_size: int = 1024
dropout: float = 0.1
pad_token_id: int = 0
bias: bool = False
tie_word_embeddings: bool = True
# Memory & training
use_checkpoint: bool = True
layer_norm_eps: float = 1e-5
init_scale: float = 0.02
# XPos / Rotary
rope_base: int = 10000
rope_scale_base: float = 512.0
adaptive_xpos: bool = True
use_adaptive_router: bool = False
# Attention enhancements
use_hybrid_attn: bool = True
lightning_ratio: int = 7
lightning_block_size: int = 256
use_flash_attn: bool = True
kv_cache: bool = False
# MoE settings
use_moe: bool = True
num_experts: int = 4
moe_top_k: int = 2
moe_capacity_factor: float = 1.2
moe_balance_factor: float = 0.1
diversity_factor: float = 0.01
expert_dropout: float = 0.1
z_loss_factor: float = 1e-4
use_global_router: bool = False # placeholder for global routing improvements
# Normalization style: if True, use Post-LayerNorm (with DeepNorm scaling below)
use_post_layernorm: bool = True
# Hybrid attention: every X layers, use full softmax-based attention instead of lightning
hybrid_attention_interval: int = 8
# ------------------------------------------------------------------------
# 2) Enhanced RMSNorm with FP16 Safety
# ------------------------------------------------------------------------
class EnhancedRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_dtype = x.dtype
if x.dtype == torch.float16:
x = x.float()
normed = x * torch.rsqrt((x * x).mean(dim=-1, keepdim=True) + self.eps)
normed = normed.to(orig_dtype)
return self.weight * normed
# ------------------------------------------------------------------------
# 3) Adaptive XPos Rotary Embedding
# ------------------------------------------------------------------------
class AdaptiveXPosRotaryEmbedding(nn.Module):
def __init__(self, dim, base=10000, scale_base=512.0, adaptive=True):
super().__init__()
assert dim % 2 == 0, "XPos dimension must be even."
self.dim = dim
self.base = base
self.scale_base = scale_base
self.adaptive = adaptive
inv_freq = 1.0 / (base ** (torch.arange(0, dim // 2).float() / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seq_len, device, layer_depth=None, dtype=torch.float32):
t = torch.arange(seq_len, device=device, dtype=dtype)
scale = self.scale_base ** (t / self.scale_base)
if self.adaptive and layer_depth is not None:
scale *= torch.exp(-layer_depth / self.scale_base)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
scaled_freqs = freqs * scale.unsqueeze(-1)
emb = torch.cat([scaled_freqs, scaled_freqs], dim=-1)
return emb.cos().unsqueeze(0).unsqueeze(0), emb.sin().unsqueeze(0).unsqueeze(0)
def rotate_half(x: torch.Tensor):
half_dim = x.shape[-1] // 2
x1 = x[..., :half_dim]
x2 = x[..., half_dim:]
return torch.cat([-x2, x1], dim=-1)
def apply_xpos_rotary_pos_emb(q, k, cos, sin):
B, nh, T, hd = q.shape
cos = cos[:, :, :T, :hd]
sin = sin[:, :, :T, :hd]
def rope(x):
return x * cos + rotate_half(x) * sin
return rope(q), rope(k)
# ------------------------------------------------------------------------
# 4) Optimized Lightning Attention Module
# ------------------------------------------------------------------------
class OptimizedLightningAttention(nn.Module):
def __init__(self, config: MiniMaxConfig):
super().__init__()
self.config = config
assert config.n_embd % config.n_head == 0
self.n_head = config.n_head
self.head_dim = config.n_embd // config.n_head
self.dropout = config.dropout
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.use_flash = config.use_flash_attn and hasattr(F, 'scaled_dot_product_attention')
self.kv_cache_enabled = config.kv_cache
self.register_buffer('kv_cache', None, persistent=False)
if config.adaptive_xpos:
self.xpos = AdaptiveXPosRotaryEmbedding(
dim=self.head_dim,
base=config.rope_base,
scale_base=config.rope_scale_base,
adaptive=config.use_adaptive_router
)
else:
self.xpos = None
def _shape_heads(self, x: torch.Tensor, B: int, T: int):
return x.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, layer_idx: Optional[int] = None):
B, T, C = x.shape
qkv = self.c_attn(x)
q, k, v = qkv.split(C, dim=2)
q = self._shape_heads(q, B, T)
k = self._shape_heads(k, B, T)
v = self._shape_heads(v, B, T)
if layer_past is not None and self.kv_cache_enabled:
pk, pv = layer_past
k = torch.cat((pk, k), dim=2)
v = torch.cat((pv, v), dim=2)
if self.kv_cache_enabled:
self.kv_cache = (k, v)
if self.xpos is not None:
cos, sin = self.xpos(seq_len=T, device=x.device, layer_depth=layer_idx)
q, k = apply_xpos_rotary_pos_emb(q, k, cos, sin)
if mask is not None:
mask = mask.bool().unsqueeze(1).unsqueeze(2)
if self.use_flash:
y = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True
)
else:
scale = 1.0 / math.sqrt(self.head_dim)
attn_scores = torch.matmul(q, k.transpose(-2, -1)) * scale
if mask is not None:
attn_scores = attn_scores.masked_fill(~mask, float('-inf'))
attn_probs = F.softmax(attn_scores, dim=-1)
attn_probs = self.attn_dropout(attn_probs)
y = torch.matmul(attn_probs, v)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
# ------------------------------------------------------------------------
# 5) Enhanced Expert Block (for MoE experts)
# ------------------------------------------------------------------------
class EnhancedExpertBlock(nn.Module):
def __init__(self, hidden_dim: int, dropout: float = 0.1):
super().__init__()
self.fc1 = nn.Linear(hidden_dim, hidden_dim * 4)
self.act = nn.GELU()
self.fc2 = nn.Linear(hidden_dim * 4, hidden_dim)
self.dropout = nn.Dropout(dropout)
with torch.no_grad():
nn.init.orthogonal_(self.fc1.weight, gain=math.sqrt(2))
nn.init.orthogonal_(self.fc2.weight, gain=math.sqrt(2))
if self.fc1.bias is not None:
nn.init.zeros_(self.fc1.bias)
if self.fc2.bias is not None:
nn.init.zeros_(self.fc2.bias)
self.layer_scale = nn.Parameter(torch.ones(1, 1, hidden_dim) * 0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r = x
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = x * self.layer_scale
return r + x
# ------------------------------------------------------------------------
# 6) Memory-Efficient MoE with Vectorized Dispatch
# ------------------------------------------------------------------------
class MemoryEfficientMoE(nn.Module):
def __init__(self, config: MiniMaxConfig):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.moe_top_k
self.capacity_factor = config.moe_capacity_factor
self.balance_factor = config.moe_balance_factor
self.diversity_factor = config.diversity_factor
self.z_loss_factor = config.z_loss_factor
self.hidden_dim = config.n_embd
self.dropout = config.expert_dropout
self.experts = nn.ModuleList([
EnhancedExpertBlock(self.hidden_dim, self.dropout) for _ in range(self.num_experts)
])
self.router = nn.Linear(self.hidden_dim, self.num_experts)
self.register_buffer('aux_loss', torch.zeros(1))
self.register_buffer('diversity_loss', torch.zeros(1))
def compute_diversity_loss(self):
param_vecs = []
for e in self.experts:
pvec = []
for p in e.parameters():
pvec.append(p.flatten())
param_vecs.append(torch.cat(pvec, dim=0))
div_loss = 0.0
for i in range(self.num_experts):
for j in range(i+1, self.num_experts):
cos_sim = F.cosine_similarity(
param_vecs[i].unsqueeze(0),
param_vecs[j].unsqueeze(0)
)
div_loss += cos_sim ** 2
return div_loss * self.diversity_factor
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.shape
N = B * T
E = self.num_experts
device = x.device
router_logits = self.router(x.view(N, C))
router_probs = F.softmax(router_logits, dim=-1)
z_loss = self.z_loss_factor * (router_logits ** 2).mean()
importance = router_probs.mean(dim=0)
target = torch.ones_like(importance) / E
balance = F.mse_loss(importance, target, reduction='sum') * self.balance_factor
top_vals, top_inds = torch.topk(router_probs, self.top_k, dim=-1)
top_vals = top_vals / (top_vals.sum(dim=-1, keepdim=True) + 1e-9)
capacity = int(self.capacity_factor * (N // E + 1))
out = torch.zeros_like(x.view(N, C), device=device)
used_slots = torch.zeros(E, dtype=torch.int32, device=device)
for i_k in range(self.top_k):
w = top_vals[:, i_k]
e_idx = top_inds[:, i_k]
mask = w > 1e-9
if not mask.any():
continue
valid_idx = mask.nonzero(as_tuple=True)[0]
for eid in range(E):
mask_eid = (e_idx[valid_idx] == eid)
count_e = mask_eid.sum().item()
if count_e == 0:
continue
c_before = used_slots[eid].item()
c_after = c_before + count_e
if c_before >= capacity:
continue
if c_after > capacity:
allowed = capacity - c_before
selected = mask_eid.nonzero(as_tuple=True)[0][:allowed]
real_idx = valid_idx[selected]
used_slots[eid] = capacity
else:
selected = mask_eid.nonzero(as_tuple=True)[0]
real_idx = valid_idx[selected]
used_slots[eid] += count_e
if len(real_idx) == 0:
continue
tokens = x.view(N, C)[real_idx]
y_ = self.experts[eid](tokens)
y_ = y_.view(len(real_idx), -1)
w_ = w[real_idx].view(-1, 1)
out[real_idx] += w_ * y_
self.aux_loss = balance + z_loss
self.diversity_loss = self.compute_diversity_loss()
return out.view(B, T, C)
# ------------------------------------------------------------------------
# 7) Enhanced Transformer Block with Hybrid Attention & DeepNorm
# ------------------------------------------------------------------------
class EnhancedHybridBlock(nn.Module):
"""
Transformer block with hybrid attention and DeepNorm residual scaling.
Depending on `attn_type`, it uses either lightning attention or (placeholder) softmax attention.
"""
def __init__(self, config: MiniMaxConfig, layer_idx: int, attn_type: str = "lightning"):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attn_type = attn_type
# Choose attention module.
# For softmax, you might replace this with a dedicated softmax attention module.
if attn_type == "softmax":
self.attn = OptimizedLightningAttention(config) # Placeholder for a softmax variant.
else:
self.attn = OptimizedLightningAttention(config)
# MoE or standard FFN
if config.use_moe:
self.mlp = MemoryEfficientMoE(config)
else:
self.mlp = EnhancedExpertBlock(config.n_embd, config.dropout)
self.ln_1 = EnhancedRMSNorm(config.n_embd, eps=config.layer_norm_eps)
self.ln_2 = EnhancedRMSNorm(config.n_embd, eps=config.layer_norm_eps)
self.use_checkpoint = config.use_checkpoint
# DeepNorm scaling factors for residual connections.
self.alpha_attn = nn.Parameter(torch.ones(1) * 0.5)
self.alpha_mlp = nn.Parameter(torch.ones(1) * 0.5)
def _forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
if self.config.use_post_layernorm:
a_out = self.attn(x, mask, layer_idx=self.layer_idx)
x = x + self.alpha_attn * a_out
x = self.ln_1(x)
m_out = self.mlp(x)
x = x + self.alpha_mlp * m_out
x = self.ln_2(x)
else:
a = self.ln_1(x)
a_out = self.attn(a, mask, layer_idx=self.layer_idx)
x = x + self.alpha_attn * a_out
m = self.ln_2(x)
m_out = self.mlp(m)
x = x + self.alpha_mlp * m_out
return x
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
if self.use_checkpoint and self.training:
return checkpoint(self._forward, x, mask)
else:
return self._forward(x, mask)
# ------------------------------------------------------------------------
# 8) Full Model: EnhancedMiniMaxGPT with Hybrid Attention
# ------------------------------------------------------------------------
class EnhancedMiniMaxGPT(nn.Module):
def __init__(self, config: MiniMaxConfig):
super().__init__()
self.config = config
# Embeddings
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.block_size, config.n_embd)
self.drop = nn.Dropout(config.dropout)
# Build transformer blocks, alternating attention type based on hybrid_attention_interval.
self.blocks = nn.ModuleList()
interval = config.hybrid_attention_interval
for layer_idx in range(config.n_layer):
if (layer_idx + 1) % interval == 0:
attn_type = "softmax"
else:
attn_type = "lightning"
blk = EnhancedHybridBlock(config, layer_idx, attn_type=attn_type)
self.blocks.append(blk)
self.ln_f = EnhancedRMSNorm(config.n_embd, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.apply(self._init_weights)
if config.tie_word_embeddings:
self.lm_head.weight = self.wte.weight
print(f"[EnhancedMiniMaxGPT] #params (non-embeddings): {self.get_num_params(non_embedding=True)/1e6:.2f}M")
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=self.config.init_scale)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.init_scale)
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.wte.weight.numel()
n_params -= self.wpe.weight.numel()
return n_params
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None):
B, T = input_ids.shape
device = input_ids.device
if attention_mask is None:
attention_mask = (input_ids != self.config.pad_token_id).long()
if T > self.config.block_size:
raise ValueError(f"Seq length {T} > block_size {self.config.block_size}")
pos_ids = torch.arange(T, device=device).unsqueeze(0)
x = self.wte(input_ids) + self.wpe(pos_ids)
x = self.drop(x)
for layer_idx, blk in enumerate(self.blocks):
x = blk(x, mask=attention_mask)
x = self.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_targets = targets[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)),
shift_targets.view(-1),
ignore_index=self.config.pad_token_id)
return logits, loss
@torch.no_grad()
def generate(self, idx: torch.Tensor, max_new_tokens: int = 50, temperature: float = 1.0,
top_k: Optional[int] = None, top_p: Optional[float] = None):
device = idx.device
generated = idx
for _ in range(max_new_tokens):
idx_cond = generated[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
logits = torch.nan_to_num(logits, nan=float('-inf'))
if top_k is not None:
vals, _ = torch.topk(logits, top_k)
logits[logits < vals[:, [-1]]] = float('-inf')
if top_p is not None:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
sorted_probs = F.softmax(sorted_logits, dim=-1)
cum_probs = torch.cumsum(sorted_probs, dim=-1)
remove_mask = cum_probs > top_p
remove_mask[..., 1:] = remove_mask[..., :-1].clone()
remove_mask[..., 0] = False
sorted_logits[remove_mask] = float('-inf')
logits = torch.zeros_like(logits).scatter(1, sorted_indices, sorted_logits)
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated = torch.cat([generated, next_token], dim=1)
return generated
# ------------------------------------------------------------------------
# Example Usage:
# ------------------------------------------------------------------------
#import tiktoken
#import logging
# Load Model
# ---------------------------
model = None
# ---------------------------
# Tokenizer Setup
# ---------------------------
special_tokens_dict = {
"<|user|>": 50257,
"<|assistant|>": 50258,
"<|pad|>": 50259,
"<|endoftext|>": 50260,
}
# Initialize the tokenizer
base_enc = tiktoken.encoding_for_model("gpt2")
encoding = tiktoken.Encoding(
name="gpt-4o-custom",
pat_str=base_enc._pat_str,
mergeable_ranks=base_enc._mergeable_ranks,
special_tokens={**base_enc._special_tokens, **special_tokens_dict},
)
pad_token_id = special_tokens_dict["<|pad|>"]
"""def load_model(model_dir="./"):
global model
if model is not None:
return model
model_config = MiniMaxConfig(
vocab_size=encoding.n_vocab,
block_size=256,
n_layer=8,
n_head=4,
n_embd=384,
dropout=0.1,
)
model = EnhancedMiniMaxGPT(model_config)
model.load_state_dict(torch.load("pytorch_model.bin", map_location=torch.device("cpu")))
model.eval()
return model
model = load_model()
# ------------------------------------------------------------------------
# API Setup
# ------------------------------------------------------------------------
app = FastAPI()
class ChatRequest(BaseModel):
messages: list[dict] # List of messages with 'role' and 'content'
class ChatResponse(BaseModel):
response: str
def build_prompt(conversation_history):
prompt = ""
for turn in conversation_history:
if turn["role"] == "user":
prompt += f"<|user|> {turn['content'].strip()}\n"
else:
prompt += f"<|assistant|> {turn['content'].strip()}\n"
prompt += "<|assistant|> "
return prompt
def generate_response(conversation_history):
prompt_text = build_prompt(conversation_history)
input_ids = torch.tensor(
encoding.encode(prompt_text, allowed_special=set(special_tokens_dict.keys())),
dtype=torch.long,
).unsqueeze(0)
if input_ids.size(1) > model.config.block_size:
input_ids = input_ids[:, -model.config.block_size:]
generated_ids = model.generate(
idx=input_ids,
max_new_tokens=100,
temperature=0.8,
top_k=50,
top_p=0.95,
)
new_tokens = generated_ids[0].tolist()[len(input_ids[0]):]
response_text = encoding.decode(new_tokens).strip()
return response_text
@app.post("/api/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
try:
response_text = generate_response(request.messages)
return ChatResponse(response=response_text)
except Exception as e:
return {"error": str(e)}"""
# ---------------------------
def load_model(model_dir="./"):
global model
if model is not None:
return model
config_path = os.path.join(model_dir, "config.json")
weights_path = os.path.join(model_dir, "pytorch_model.bin")
with open(config_path, "r") as f:
config = json.load(f)
model_config = MiniMaxConfig(
vocab_size=encoding.n_vocab,
block_size=512,
n_layer=12,
n_head=8,
n_embd=512,
dropout=0.1,
#tie_word_embeddings=True,
#adaptive_xpos=True,
hybrid_attention_interval=4,
num_experts= 2,
)
model = EnhancedMiniMaxGPT(model_config)
#model.load_state_dict(torch.load(weights_path, map_location=torch.device("cpu")))
state_dict = torch.load(weights_path, map_location=torch.device("cpu"))
model.load_state_dict(state_dict, strict=False)
model.eval()
return model
def load_model_weights(checkpoint_path, config, device):
"""
Load only the model weights from a .pth file.
Ensures compatibility by loading only matched layers.
"""
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
model = EnhancedMiniMaxGPT(config).to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
# Check for shape mismatches and fix aux_loss shape if necessary
model_state_dict = model.state_dict()
compatible_state_dict = {}
for k, v in state_dict.items():
if k in model_state_dict:
if v.shape == model_state_dict[k].shape:
compatible_state_dict[k] = v
elif "aux_loss" in k and v.shape == torch.Size([]):
compatible_state_dict[k] = v.unsqueeze(0) # Convert scalar to tensor
print(f"Fixed shape for {k}")
else:
print(f"Skipping {k} due to shape mismatch.")
# Load compatible weights
model.load_state_dict(compatible_state_dict, strict=False)
model.eval()
print(f"✅ Loaded model weights from {checkpoint_path}")
return model
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def get_device():
"""Return GPU device if available, else CPU."""
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global model variable
model_config = MiniMaxConfig(
vocab_size=encoding.n_vocab,
block_size=512,
n_layer=12,
n_head=8,
n_embd=512,
dropout=0.1,
#tie_word_embeddings=True,
#adaptive_xpos=True,
hybrid_attention_interval=4,
num_experts= 2,
)
model = None
checkpoint_path = "pytorch_model.bin"
device = get_device()
model = load_model_weights(checkpoint_path, model_config, device)#load_model()
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: list[ChatMessage]
class ChatResponse(BaseModel):
response: str
status: str = "success"
async def ensure_model_loaded():
"""Ensure model is loaded before processing requests"""
global model
if model is None:
try:
logger.info("Loading model...")
model = load_model()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail="Model initialization failed"
)
#@app.post("/api/chat", response_model=ChatResponse)
@app.post("/api/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
try:
await ensure_model_loaded()
logger.info(f"Received chat request with {len(request.messages)} messages")
# Either:
# conversation = [msg.model_dump() for msg in request.messages]
# Or if you only need role & content:
conversation = [{"role": msg.role, "content": msg.content} for msg in request.messages]
response_text = generate_response(conversation)
logger.info("Response generated successfully")
return ChatResponse(response=response_text)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e)
)
@app.get("/api/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
import gradio as gr
# ---------------------------
def build_prompt(conversation_history):
prompt = ""
for turn in conversation_history:
if turn["role"] == "user":
prompt += f"<|user|> {turn['content'].strip()}\n"
else:
prompt += f"<|assistant|> {turn['content'].strip()}\n"
prompt += "<|assistant|> "
return prompt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def generate_response(conversation_history):
# automatically set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
prompt_text = build_prompt(conversation_history)
input_ids = torch.tensor(
encoding.encode(prompt_text, allowed_special=set(special_tokens_dict.keys())),
dtype=torch.long,
device=device,
).unsqueeze(0)
if input_ids.size(1) > model.config.block_size:
input_ids = input_ids[:, -model.config.block_size:]
generated_ids = model.generate(
idx=input_ids,
max_new_tokens=100,
temperature=1.2,
top_k=50,
top_p=0.95,
)
new_tokens = generated_ids[0].tolist()[len(input_ids[0]):]
response_text = encoding.decode(new_tokens).strip()
return response_text
def chatbot_fn(user_input):
response = generate_response([{"role": "user", "content": user_input}])
return response
# Expose Gradio as an API instead of UI
iface = gr.Interface(fn=chatbot_fn, inputs="text", outputs="text")
# Enable API mode by setting `server_name="0.0.0.0"` and `serve=True`
#iface.launch(server_name="0.0.0.0", server_port=7860)
# The magic: mount Gradio onto the FastAPI app at "/"
app = gr.mount_gradio_app(app, iface, path="/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|