farcasclaudiu commited on
Commit
26fb56e
·
1 Parent(s): 2619944
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -1,49 +1,52 @@
1
-
2
  # %% [markdown]
3
  # Dogs vs Cats
4
 
5
  # %%
6
- #|default_exp app
7
  # !pip install gradio
8
 
9
  # %%
10
- #|export
11
  from fastai.vision.all import *
12
  import gradio as gr
13
 
14
- def is_cat(x): return x[0].isupper()
 
 
 
15
 
16
  # %%
17
- im = PILImage.create('dog.jpg')
18
- im.thumbnail((192,192))
19
  im
20
 
21
  # %%
22
- #|export
23
 
24
  learn = load_learner("model.pkl")
25
 
26
  # %%
27
- %time learn.predict(im)
 
28
 
29
  # %%
30
- #|export
31
- categories = ('Dog', 'Cat')
 
32
 
33
  def classify_image(img):
34
- pred,idx,probs = learn.predict(img)
35
  return dict(zip(categories, map(float, probs)))
36
 
 
37
  # %%
38
  classify_image(im)
39
 
40
  # %%
41
- #|export
42
- image = gr.inputs.Image(shape=(192,192))
43
  label = gr.outputs.Label()
44
- examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']
45
 
46
  intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
47
  intf.launch(inline=False)
48
-
49
-
 
 
1
  # %% [markdown]
2
  # Dogs vs Cats
3
 
4
  # %%
5
+ # |default_exp app
6
  # !pip install gradio
7
 
8
  # %%
9
+ # |export
10
  from fastai.vision.all import *
11
  import gradio as gr
12
 
13
+
14
+ def is_cat(x):
15
+ return x[0].isupper()
16
+
17
 
18
  # %%
19
+ im = PILImage.create("dog.jpg")
20
+ im.thumbnail((192, 192))
21
  im
22
 
23
  # %%
24
+ # |export
25
 
26
  learn = load_learner("model.pkl")
27
 
28
  # %%
29
+ # %time learn.predict(im)
30
+ learn.predict(im)
31
 
32
  # %%
33
+ # |export
34
+ categories = ("Dog", "Cat")
35
+
36
 
37
  def classify_image(img):
38
+ pred, idx, probs = learn.predict(img)
39
  return dict(zip(categories, map(float, probs)))
40
 
41
+
42
  # %%
43
  classify_image(im)
44
 
45
  # %%
46
+ # |export
47
+ image = gr.inputs.Image(shape=(192, 192))
48
  label = gr.outputs.Label()
49
+ examples = ["dog.jpg", "cat.jpg", "dunno.jpg"]
50
 
51
  intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
52
  intf.launch(inline=False)