File size: 40,493 Bytes
550665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
import os
import time
import json
import math
import copy
import collections
from typing import Optional, List, Dict, Tuple, Callable, Any, Union, NewType
import numpy as np
from tqdm import tqdm

import datasets


from transformers import AutoTokenizer
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from transformers.trainer_utils import EvalPrediction, EvalLoopOutput

from .args import (
    HfArgumentParser,
    RetroArguments,
    TrainingArguments,
)

from .base import BaseReader
from . import constants as C
from .preprocess import (
    get_sketch_features,
    get_intensive_features
)
from .metrics import (
    compute_classification_metric,
    compute_squad_v2
)

DataClassType = NewType("DataClassType", Any)
logger = logging.get_logger(__name__)

class SketchReader(BaseReader):
    name: str = "sketch"
    
    def postprocess(

        self,

        output: Union[np.ndarray, EvalLoopOutput],

        eval_examples: datasets.Dataset,

        eval_dataset: datasets.Dataset,

        mode: str = "evaluate",

    ) -> Union[EvalPrediction, Dict[str, float]]:
        """

        Postprocess the output of the SketchReader model.



        Args:

            output (Union[np.ndarray, EvalLoopOutput]): The model output.

            eval_examples (datasets.Dataset): The evaluation examples.

            eval_dataset (datasets.Dataset): The evaluation dataset.

            mode (str, optional): The mode of operation. Defaults to "evaluate".



        Returns:

            Union[EvalPrediction, Dict[str, float]]: The evaluation prediction or the final map.

        """

        # External Front Verification (E-FV)

        # Extract the logits from the output
        if isinstance(output, EvalLoopOutput):
            logits = output.predictions
        else:
            logits = output

        # Create a mapping from example ID to index
        example_id_to_index = {k: i for i, k in enumerate(eval_examples[C.ID_COLUMN_NAME])}

        # Create a mapping from example index to features
        features_per_example = collections.defaultdict(list)
        for i, feature in enumerate(eval_dataset):
            features_per_example[example_id_to_index[feature["example_id"]]].append(i)  # example_id added from get_sketch_features

        # Create a mapping from example index to the number of features
        count_map = {k: len(v) for k, v in features_per_example.items()}

        # Calculate the average logits for each example
        logits_ans = np.zeros(len(count_map))
        logits_na = np.zeros(len(count_map))
        for example_index, example in enumerate(tqdm(eval_examples)):
            feature_indices = features_per_example[example_index]
            n_strides = count_map[example_index]
            logits_ans[example_index] += logits[example_index, 0] / n_strides
            logits_na[example_index] += logits[example_index, 1] / n_strides

        # Calculate the E-VF score
        score_ext = logits_ans - logits_na

        # Save the EVF score
        final_map = dict(zip(eval_examples[C.ID_COLUMN_NAME], score_ext.tolist()))
        with open(os.path.join(self.args.output_dir, C.SCORE_EXT_FILE_NAME), "w") as writer:
            writer.write(json.dumps(final_map, indent=4) + "\n")

        if mode == "evaluate":
            return EvalPrediction(
                predictions=logits, label_ids=output.label_ids,
            )
        else:
            return final_map
    
class IntensiveReader(BaseReader):
    name: str = "intensive"
    
    def postprocess(

        self,

        output: EvalLoopOutput,

        eval_examples: datasets.Dataset,

        eval_dataset: datasets.Dataset,

        log_level: int = logging.WARNING,

        mode: str = "evaluate",

    ) -> Union[List[Dict[str, Any]], EvalPrediction]:
        """

        Post-processing step for the internal front verification (I-FV) and formatting the results.



        Args:

            output (EvalLoopOutput): The output of the model's evaluation loop.

            eval_examples (datasets.Dataset): The evaluation examples.

            eval_dataset (datasets.Dataset): The evaluation dataset.

            log_level (int, optional): The logging level. Defaults to logging.WARNING.

            mode (str, optional): The mode of the post-processing. Defaults to "evaluate".



        Returns:

            Union[List[Dict[str, Any]], EvalPrediction]: The formatted predictions or the evaluation prediction.

        """
        # Compute predictions
        predictions, nbest_json, scores_diff_json = self.compute_predictions(
            eval_examples,
            eval_dataset,
            output.predictions,
            version_2_with_negative=self.data_args.version_2_with_negative,
            n_best_size=self.data_args.n_best_size,
            max_answer_length=self.data_args.max_answer_length,
            null_score_diff_threshold=self.data_args.null_score_diff_threshold,
            output_dir=self.args.output_dir,
            log_level=log_level,
            n_tops=(self.data_args.start_n_top, self.data_args.end_n_top),
        )

        # Return the nbest_json and scores_diff_json if in retro_inference mode
        if mode == "retro_inference":
            return nbest_json, scores_diff_json

        # Format the predictions
        if self.data_args.version_2_with_negative:
            formatted_predictions = [
                {
                    "id": k,
                    "prediction_text": v,
                    "no_answer_probability": scores_diff_json[k],
                }
                for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [
                {"id": k, "prediction_text": v} for k, v in predictions.items()
            ]

        # Return the formatted predictions if in predict mode
        if mode == "predict":
            return formatted_predictions

        # Format the evaluation predictions
        references = [
            {"id": ex[C.ID_COLUMN_NAME], "answers": ex[C.ANSWER_COLUMN_NAME]}
            for ex in eval_examples
        ]
        return EvalPrediction(
            predictions=formatted_predictions, label_ids=references
        )
            
    def compute_predictions(

        self,

        examples: datasets.Dataset,

        features: datasets.Dataset,

        predictions: Tuple[np.ndarray, np.ndarray],

        version_2_with_negative: bool = False,

        n_best_size: int = 20,

        max_answer_length: int = 30,

        null_score_diff_threshold: float = 0.0,

        output_dir: Optional[str] = None,

        log_level: Optional[int] = logging.WARNING,

        n_tops: Tuple[int, int] = (-1, -1),

        use_choice_logits: bool = False,

    ):
        """

        Compute predictions for a given set of examples based on the provided features and model predictions.



        Args:

            examples (datasets.Dataset): The dataset containing the examples.

            features (datasets.Dataset): The dataset containing the features.

            predictions (Tuple[np.ndarray, np.ndarray]): A tuple containing the start logits, end logits, and choice logits.

            version_2_with_negative (bool, optional): Whether to use version 2 with negative predictions. Defaults to False.

            n_best_size (int, optional): The number of top predictions to consider. Defaults to 20.

            max_answer_length (int, optional): The maximum length of the answer. Defaults to 30.

            null_score_diff_threshold (float, optional): The score difference threshold for the null prediction. Defaults to 0.0.

            output_dir (Optional[str], optional): The directory to save the predictions. Defaults to None.

            log_level (Optional[int], optional): The log level. Defaults to logging.WARNING.

            n_tops (Tuple[int, int], optional): The number of top predictions to consider for each example. Defaults to (-1, -1).

            use_choice_logits (bool, optional): Whether to use choice logits. Defaults to False.



        Returns:

            Tuple[Dict[str, str], Dict[str, List[Dict[str, Union[str, float]]]], Dict[str, float]]: A tuple containing the all predictions, all n-best predictions, and scores difference.



        Raises:

            ValueError: If the length of predictions is not 2 or 3.

        """
        if len(predictions) not in [2, 3]:
            raise ValueError(
                "`predictions` should be a tuple with two elements (start_logits, end_logits) or three elements (start_logits, end_logits, choice_logits)."
            )
        
        # if len(predictions) == 3:
        #     all_start_logits, all_end_logits, all_choice_logits = predictions
        # else:
        #     all_start_logits, all_end_logits = predictions
        #     all_choice_logits = None
        
        all_start_logits, all_end_logits = predictions[:2]
        all_choice_logits = None
        if len(predictions) == 3:
            all_choice_logits = predictions[-1]
            
        # all_choice_logits = predictions[2] if len(predictions) == 3 else None

        # Build a map example to its corresponding features.
        example_id_to_index = {k: i for i, k in enumerate(examples[C.ID_COLUMN_NAME])}
        features_per_example = collections.defaultdict(list)
        for i, feature in enumerate(features):
            features_per_example[example_id_to_index[feature["example_id"]]].append(i)
        
        all_predictions = collections.OrderedDict()
        all_nbest_json = collections.OrderedDict()
        scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
        
        # Logging.
        logger.setLevel(log_level)
        logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

        # Looping through all the examples
        for example_index, example in enumerate(tqdm(examples)):
            # Those are the indices of the features associated to the current example.
            feature_indices = features_per_example[example_index]
            
            min_null_prediction = None
            prelim_predictions = []
            
            # Looping through all the features associated to the current example.
            for feature_index in feature_indices:
                # We grab the predictions of the model for this feature.
                start_logits = all_start_logits[feature_index]
                end_logits = all_end_logits[feature_index]
                
                feature_null_score = start_logits[0] + end_logits[0]
                if all_choice_logits is not None: 
                    choice_logits = all_choice_logits[feature_index] 
                if use_choice_logits:
                    feature_null_score = choice_logits[1]
                    
                # This is what will allow us to map some the positions
                # in our logits to span of texts in the original context.
                offset_mapping = features[feature_index]["offset_mapping"]
                
                # Optional `token_is_max_context`,
                # if provided we will remove answers that do not have the maximum context
                # available in the current feature.
                token_is_max_context = features[feature_index].get("token_is_max_context", None)
                
                # Update minimum null prediction
                if (
                    min_null_prediction is None or
                    min_null_prediction["score"] > feature_null_score
                ):
                    min_null_prediction = {
                        "offsets": (0, 0),
                        "score": feature_null_score,
                        "start_logit": start_logits[0],
                        "end_logit": end_logits[0],
                    }
                    
                # Go through all possibilities for the {top k} greater start and end logits
                start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
                end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
                for start_index in start_indexes:
                    for end_index in end_indexes:
                        # We could hypothetically create invalid predictions, e.g., predict
                        # that the start of the span is in the question. We throw out all
                        # invalid predictions.
                        if (
                            start_index >= len(offset_mapping) or
                            end_index >= len(offset_mapping) or
                            offset_mapping[start_index] is None or
                            offset_mapping[end_index] is None
                        ):
                            continue
                        # Don't consider answers with a length that is either < 0 or > max_answer_length.
                        if (
                            end_index < start_index or
                            end_index - start_index + 1 > max_answer_length
                        ):
                            continue
                        # Don't consider answer that don't have the maximum context available
                        if (
                            token_is_max_context is not None and
                            not token_is_max_context.get(str(start_index), False)
                        ):
                            continue
                        
                        prelim_predictions.append(
                            {
                                "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
                                "score": start_logits[start_index] + end_logits[end_index],
                                "start_logit": start_logits[start_index],
                                "end_logit": end_logits[end_index],
                            }
                        )
            
            if version_2_with_negative:
                # Add the minimum null prediction
                prelim_predictions.append(min_null_prediction)
                null_score = min_null_prediction["score"]
                
            # Only keep the best `n_best_size` predictions.
            predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]      
            
            # Add back the minimum null prediction if it was removed because of its low score
            if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
                predictions.append(min_null_prediction)
                
            # Use the offsets to gather the answer text in the original context
            context = example["context"]
            for pred in predictions:
                offsets = pred.pop("offsets")      
                pred["text"] = context[offsets[0] : offsets[1]]
            
            # In the very rare edge case we have not a single non-null prediction,
            # we create a fake prediction to avoid failure.
            if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
                predictions.insert(0, {"text": "", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0,})
                
            # Compute the softmax of all scores
            # (we do it with numpy to stay independent from torch/tf) in this file,
            # using the LogSum trick).
            scores = np.array([pred.pop("score") for pred in predictions])
            exp_scores = np.exp(scores - np.max(scores))
            probs = exp_scores / exp_scores.sum()
            
            # Include the probabilities in our predictions.
            for prob, pred in zip(probs, predictions):
                pred["probability"] = prob
                
            # Pick the best prediction. If the null answer is not possible, this is easy.
            if not version_2_with_negative:
                all_predictions[example[C.ID_COLUMN_NAME]] = predictions[0]["text"]
            else:
                # Otherwise we first need to find the best non-empty prediction.
                i = 0
                try:
                    while predictions[i]["text"] == "":
                        i += 1
                except:
                    i = 0
                best_non_null_pred = predictions[i]

                # Then we compare to the null prediction using the threshold.
                score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
                scores_diff_json[example[C.ID_COLUMN_NAME]] = float(score_diff)  # To be JSON-serializable.
                if score_diff > null_score_diff_threshold:
                    all_predictions[example[C.ID_COLUMN_NAME]] = ""
                else:
                    all_predictions[example[C.ID_COLUMN_NAME]] = best_non_null_pred["text"]

            # Make `predictions` JSON-serializable by casting np.float back to float.
            all_nbest_json[example[C.ID_COLUMN_NAME]] = [
                {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
                for pred in predictions
            ]

        # If we have an output_dir, let's save all those dicts.
        if output_dir is not None:
            if not os.path.isdir(output_dir):
                raise EnvironmentError(f"{output_dir} is not a directory.")

            prediction_file = os.path.join(output_dir, C.INTENSIVE_PRED_FILE_NAME)
            nbest_file = os.path.join(output_dir, C.NBEST_PRED_FILE_NAME)
            if version_2_with_negative:
                null_odds_file = os.path.join(output_dir, C.SCORE_DIFF_FILE_NAME)

            logger.info(f"Saving predictions to {prediction_file}.")
            with open(prediction_file, "w") as writer:
                writer.write(json.dumps(all_predictions, indent=4) + "\n")
            logger.info(f"Saving nbest_preds to {nbest_file}.")
            with open(nbest_file, "w") as writer:
                writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
            if version_2_with_negative:
                logger.info(f"Saving null_odds to {null_odds_file}.")
                with open(null_odds_file, "w") as writer:
                    writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

        return all_predictions, all_nbest_json, scores_diff_json
    
class RearVerifier:
    
    def __init__(

        self, 

        beta1: int = 1, 

        beta2: int = 1,

        best_cof: int = 1,

        thresh: float = 0.0,

    ):
        self.beta1 = beta1
        self.beta2 = beta2
        self.best_cof = best_cof
        self.thresh = thresh
    
    def __call__(

        self,

        score_ext: Dict[str, float],

        score_diff: Dict[str, float],

        nbest_preds: Dict[str, Dict[int, Dict[str, float]]]

    ):
        """

        This function takes in the score_ext and score_diff dictionaries, and the nbest_preds dictionary.

        It performs a verification process on the input data and returns the output predictions and scores.



        Args:

            score_ext (Dict[str, float]): A dictionary containing the extended scores.

            score_diff (Dict[str, float]): A dictionary containing the score differences.

            nbest_preds (Dict[str, Dict[int, Dict[str, float]]]): A dictionary containing the nbest predictions.



        Returns:

            Tuple[Dict[str, str], Dict[str, float]]: A tuple containing the output predictions and scores.

        """
        # Initialize an ordered dictionary to store all the scores
        all_scores = collections.OrderedDict()
        # Check if the keys of score_ext and score_diff are equal
        assert score_ext.keys() == score_diff.keys()
        # Iterate over the keys in score_ext and calculate the scores
        for key in score_ext.keys():
            if key not in all_scores:
                all_scores[key] = []
            all_scores[key].extend(
                [self.beta1 * score_ext[key],
                 self.beta2 * score_diff[key]]
            )
        # Calculate the mean score for each key and store it in output_scores
        output_scores = {}
        for key, scores in all_scores.items():
            mean_score = sum(scores) / float(len(scores))
            output_scores[key] = mean_score
        
        # Initialize an ordered dictionary to store all the nbest predictions
        all_nbest = collections.OrderedDict()
        # Iterate over the keys in nbest_preds and calculate the nbest predictions
        for key, entries in nbest_preds.items():
            if key not in all_nbest:
                all_nbest[key] = collections.defaultdict(float)
            for entry in entries:
                prob = self.best_cof * entry["probability"]
                all_nbest[key][entry["text"]] += prob
        # # Sort the nbest predictions for each key based on the probability and store the best text in output_predictions
        # output_predictions = {key: sorted(entry_map.keys(), key=lambda x: entry_map[x], reverse=True)[0] for key, entry_map in all_nbest.items()}
        
        # # If the score for a question is above the threshold, set the prediction to empty string
        # output_predictions = {qid: "" if output_scores[qid] > self.thresh else output_predictions[qid] for qid in output_predictions.keys()}
        
        # Sort the nbest predictions for each key based on the probability and store the best text in output_predictions
        output_predictions = {}
        for key, entry_map in all_nbest.items():
            sorted_texts = sorted(
                entry_map.keys(), key=lambda x: entry_map[x], reverse=True
            )
            best_text = sorted_texts[0]
            output_predictions[key] = best_text
            
        # If the score for a question is above the threshold, set the prediction to empty string
        for qid in output_predictions.keys():
            if output_scores[qid] > self.thresh:
                output_predictions[qid] = ""
        
        return output_predictions, output_scores
    
    
class RetroReader:
    def __init__(

        self,

        args,

        sketch_reader: SketchReader,

        intensive_reader: IntensiveReader,

        rear_verifier: RearVerifier,

        prep_fn: Tuple[Callable, Callable],

    ):
        self.args = args
        # Set submodules
        self.sketch_reader = sketch_reader
        self.intensive_reader = intensive_reader
        self.rear_verifier = rear_verifier
        
        # Set prep function for inference
        self.sketch_prep_fn, self.intensive_prep_fn = prep_fn
    
    @classmethod
    def load(

        cls,

        train_examples=None,

        sketch_train_dataset=None,

        intensive_train_dataset=None,

        eval_examples=None,

        sketch_eval_dataset=None,

        intensive_eval_dataset=None,

        config_file: str = C.DEFAULT_CONFIG_FILE,

        device: str = "cpu",

    ):
        # Get arguments from yaml files
        parser = HfArgumentParser([RetroArguments, TrainingArguments])
        retro_args, training_args = parser.parse_yaml_file(yaml_file=config_file)
        if training_args.run_name is not None and "," in training_args.run_name:
            sketch_run_name, intensive_run_name = training_args.run_name.split(",")
        else:
            sketch_run_name, intensive_run_name = None, None
        if training_args.metric_for_best_model is not None and "," in training_args.metric_for_best_model:
            sketch_best_metric, intensive_best_metric = training_args.metric_for_best_model.split(",")
        else:
            sketch_best_metric, intensive_best_metric = None, None
        sketch_training_args = copy.deepcopy(training_args)
        intensive_training_args = training_args
        
        print(f"Loading sketch tokenizer from {retro_args.sketch_tokenizer_name} ...")
        sketch_tokenizer = AutoTokenizer.from_pretrained(
            # pretrained_model_name_or_path="google/electra-large-discriminator",
            pretrained_model_name_or_path=retro_args.sketch_tokenizer_name,
            use_auth_token=retro_args.use_auth_token,
            revision=retro_args.sketch_revision,
            # return_tensors='pt',
        )
        # sketch_tokenizer.to(device)
        
        # If `train_examples` is feeded, perform preprocessing
        if train_examples is not None and sketch_train_dataset is None:
            print("[Sketch] Preprocessing train examples ...")
            sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "train", retro_args)
            sketch_train_dataset = train_examples.map(
                sketch_prep_fn,
                batched=is_batched,
                remove_columns=train_examples.column_names,
                num_proc=retro_args.preprocessing_num_workers,
                load_from_cache_file=not retro_args.overwrite_cache,
            )
        # If `eval_examples` is feeded, perform preprocessing
        if eval_examples is not None and sketch_eval_dataset is None:
            print("[Sketch] Preprocessing eval examples ...")
            sketch_prep_fn, is_batched = get_sketch_features(sketch_tokenizer, "eval", retro_args)
            sketch_eval_dataset = eval_examples.map(
                sketch_prep_fn,
                batched=is_batched,
                remove_columns=eval_examples.column_names,
                num_proc=retro_args.preprocessing_num_workers,
                load_from_cache_file=not retro_args.overwrite_cache,
            )
        # Get preprocessing function for inference
        print("[Sketch] Preprocessing inference examples ...")
        sketch_prep_fn, _ = get_sketch_features(sketch_tokenizer, "test", retro_args)
        
        # Get model for sketch reader
        sketch_model_cls = retro_args.sketch_model_cls
        print(f"[Sketch] Loading sketch model from {retro_args.sketch_model_name} ...")
        sketch_model = sketch_model_cls.from_pretrained(
            pretrained_model_name_or_path=retro_args.sketch_model_name,
            use_auth_token=retro_args.use_auth_token,
            revision=retro_args.sketch_revision,
        )
        sketch_model.to(device)
        
        # # Free sketch weights for transfer learning
        # if retro_args.sketch_model_mode == "finetune":
        #     pass
        # else:
        #     print("[Sketch] Freezing sketch weights for transfer learning ...")
        #     for param in list(sketch_model.parameters())[:-5]:
        #             param.requires_grad_(False)
                    
        # Get sketch reader
        sketch_training_args.run_name = sketch_run_name
        sketch_training_args.output_dir += "/sketch"
        sketch_training_args.metric_for_best_model = sketch_best_metric
        sketch_reader = SketchReader(
            model=sketch_model,
            args=sketch_training_args,
            train_dataset=sketch_train_dataset,
            eval_dataset=sketch_eval_dataset,
            eval_examples=eval_examples,
            data_args=retro_args,
            tokenizer=sketch_tokenizer,
            compute_metrics=compute_classification_metric,
        )
        
        print(f"[Intensive] Loading intensive tokenizer from {retro_args.intensive_tokenizer_name} ...")
        intensive_tokenizer = AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path=retro_args.intensive_tokenizer_name,
            use_auth_token=retro_args.use_auth_token,
            revision=retro_args.intensive_revision,
            # return_tensors='pt',
        )
        # intensive_tokenizer.to(device)
        
        # If `train_examples` is feeded, perform preprocessing
        if train_examples is not None and intensive_train_dataset is None:
            print("[Intensive] Preprocessing train examples ...")
            intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "train", retro_args)
            intensive_train_dataset = train_examples.map(
                intensive_prep_fn,
                batched=is_batched,
                remove_columns=train_examples.column_names,
                num_proc=retro_args.preprocessing_num_workers,
                load_from_cache_file=not retro_args.overwrite_cache,
            )
        # If `eval_examples` is feeded, perform preprocessing
        if eval_examples is not None and intensive_eval_dataset is None:
            print("[Intensive] Preprocessing eval examples ...")
            intensive_prep_fn, is_batched = get_intensive_features(intensive_tokenizer, "eval", retro_args)
            intensive_eval_dataset = eval_examples.map(
                intensive_prep_fn,
                batched=is_batched,
                remove_columns=eval_examples.column_names,
                num_proc=retro_args.preprocessing_num_workers,
                load_from_cache_file=not retro_args.overwrite_cache,
            )
        # Get preprocessing function for inference
        print("[Intensive] Preprocessing test examples ...")
        intensive_prep_fn, _ = get_intensive_features(intensive_tokenizer, "test", retro_args)
        
        # Get model for intensive reader
        intensive_model_cls = retro_args.intensive_model_cls
        print(f"[Intensive] Loading intensive model from {retro_args.intensive_model_name} ...")
        intensive_model = intensive_model_cls.from_pretrained(
            pretrained_model_name_or_path=retro_args.intensive_model_name,
            use_auth_token=retro_args.use_auth_token,
            revision=retro_args.intensive_revision,
        )
        intensive_model.to(device)
        
        # Free intensive weights for transfer learning
        if retro_args.intensive_model_mode == "finetune":
            pass
        else:
            print("[Intensive] Freezing intensive weights for transfer learning ...")
            for param in list(intensive_model.parameters())[:-5]:
                    param.requires_grad_(False)
            
        # Get intensive reader
        intensive_training_args.run_name = intensive_run_name
        intensive_training_args.output_dir += "/intensive"
        intensive_training_args.metric_for_best_model = intensive_best_metric
        intensive_reader = IntensiveReader(
            model=intensive_model,
            args=intensive_training_args,
            train_dataset=intensive_train_dataset,
            eval_dataset=intensive_eval_dataset,
            eval_examples=eval_examples,
            data_args=retro_args,
            tokenizer=intensive_tokenizer,
            compute_metrics=compute_squad_v2,
        )
        
        # Get rear verifier
        rear_verifier = RearVerifier(
            beta1=retro_args.beta1,
            beta2=retro_args.beta2,
            best_cof=retro_args.best_cof,
            thresh=retro_args.rear_threshold,
        )
        
        return cls(
            args=retro_args,
            sketch_reader=sketch_reader,
            intensive_reader=intensive_reader,
            rear_verifier=rear_verifier,
            prep_fn=(sketch_prep_fn, intensive_prep_fn),
        )
        
    def __call__(

        self,

        query: str,

        context: Union[str, List[str]],

        return_submodule_outputs: bool = False,

    ) -> Tuple[Any]:
        """

        Performs inference on a given query and context.



        Args:

            query (str): The query to be answered.

            context (Union[str, List[str]]): The context in which the query is asked.

                If it is a list of strings, they will be joined together.

            return_submodule_outputs (bool, optional): Whether to return the outputs of the submodules.

                Defaults to False.



        Returns:

            Tuple[Any]: A tuple containing the predictions, scores, and optionally the outputs of the submodules.

        """
        # If context is a list, join it into a single string
        if isinstance(context, list):
            context = " ".join(context)
        
        # Create a predict examples dataset with a single example
        predict_examples = datasets.Dataset.from_dict({
            "example_id": ["0"],  # Example ID
            C.ID_COLUMN_NAME: ["id-01"],  # ID
            C.QUESTION_COLUMN_NAME: [query],  # Query
            C.CONTEXT_COLUMN_NAME: [context],  # Context
        })
        
        # Perform inference on the predict examples dataset
        return self.inference(predict_examples, return_submodule_outputs=return_submodule_outputs)
    
    def train(self, module: str = "all", device: str = "cpu"):
        """

        Trains the specified module.



        Args:

            module (str, optional): The module to train. Defaults to "all".

                Possible values: "all", "sketch", "intensive".

        """
        
        def wandb_finish(module):
            """

            Finishes the Weights & Biases (wandb) run for the given module.



            Args:

                module: The module for which to finish the wandb run.

            """
            for callback in module.callback_handler.callbacks:
                # Check if the callback is a wandb callback
                if "wandb" in str(type(callback)).lower():
                    # Finish the wandb run
                    if hasattr(callback, '_wandb'):
                        callback._wandb.finish()
                    # Reset the initialized flag
                    callback._initialized = False
       
        print(f"Starting training for module: {module}")
        # Train sketch reader
        if module.lower() in ["all", "sketch"]:
            print("Training sketch reader")
            self.sketch_reader.train()
            
            print("Saving sketch reader")
            self.sketch_reader.save_model()
            print("Saving sketch reader state")
            self.sketch_reader.save_state()
            
            self.sketch_reader.free_memory()
            wandb_finish(self.sketch_reader)
            print("Sketch reader training finished")
        # Train intensive reader
        if module.lower() in ["all", "intensive"]:
            print("Training intensive reader")
            self.intensive_reader.train()
            
            print("Saving intensive reader")
            self.intensive_reader.save_model()
            
            print("Saving intensive reader state")
            self.intensive_reader.save_state()
            
            self.intensive_reader.free_memory()
            wandb_finish(self.intensive_reader)
            print("Intensive reader training finished")
        print("Training finished")
            
    def inference(self, predict_examples: datasets.Dataset, return_submodule_outputs: bool = True) -> Tuple[Any]:
        """

        Performs inference on the given predict examples dataset.



        Args:

            predict_examples (datasets.Dataset): The dataset containing the predict examples.

            return_submodule_outputs (bool, optional): Whether to return the outputs of the submodules. Defaults to False.



        Returns:

            Tuple[Any]: A tuple containing the predictions, scores, and optionally the outputs (score_ext, nbest_preds, score_diff) of the submodules.

        """
        # Add the example_id column if it doesn't exist
        if "example_id" not in predict_examples.column_names:
            predict_examples = predict_examples.map(
                lambda _, i: {"example_id": str(i)},
                with_indices=True,
            )
        
        # Prepare the features for sketch reader and intensive reader
        sketch_features = predict_examples.map(
            self.sketch_prep_fn,
            batched=True,
            remove_columns=predict_examples.column_names,
        )
        intensive_features = predict_examples.map(
            self.intensive_prep_fn,
            batched=True,
            remove_columns=predict_examples.column_names,
        )
        
        # Perform inference on sketch reader
        # self.sketch_reader.to(self.sketch_reader.args.device)
        score_ext = self.sketch_reader.predict(sketch_features, predict_examples)
        # self.sketch_reader.to("cpu")
        
        # Perform inference on intensive reader
        # self.intensive_reader.to(self.intensive_reader.args.device)
        nbest_preds, score_diff = self.intensive_reader.predict(
            intensive_features, predict_examples, mode="retro_inference")
        # self.intensive_reader.to("cpu")
        
        # Combine the outputs of the submodules
        predictions, scores = self.rear_verifier(score_ext, score_diff, nbest_preds)
        outputs = (predictions, scores)
        
        # Add the outputs of the submodules if required
        if return_submodule_outputs:
            outputs += (score_ext, nbest_preds, score_diff)
        
        return outputs
    
    def evaluate(self, test_dataset: datasets.Dataset) -> dict:
        """

        Evaluates the model on the given test dataset.



        Args:

            test_dataset (Dataset): The dataset containing the test examples and ground truth answers.



        Returns:

            dict: A dictionary containing the evaluation metrics.

        """
        # Perform inference on the test dataset
        predictions, scores, score_ext, nbest_preds, score_diff = self.inference(test_dataset, return_submodule_outputs=True)
        
        # Extract ground truth answers
        ground_truths = test_dataset[C.ANSWER_COLUMN_NAME]
        
        formatted_predictions = []
        for example, pred in zip(test_dataset, predictions):
            formatted_predictions.append({
                'id': example[C.ID_COLUMN_NAME],
                'prediction_text': pred,
                'no_answer_probability': 0.0  # Assuming no_answer_probability is 0 for simplicity
            })
        
        formatted_references = []
        for example in test_dataset:
            formatted_references.append({
                'id': example[C.ID_COLUMN_NAME],
                'answers': example[C.ANSWER_COLUMN_NAME],
            })
        
        # Return the evaluation metrics
        return compute_squad_v2(EvalPrediction(predictions=formatted_predictions, label_ids=formatted_references))
    
    @property
    def null_score_diff_threshold(self):
        return self.args.null_score_diff_threshold
    
    @null_score_diff_threshold.setter
    def null_score_diff_threshold(self, val):
        self.args.null_score_diff_threshold = val
        
    @property
    def n_best_size(self):
        return self.args.n_best_size
    
    @n_best_size.setter
    def n_best_size(self, val):
        self.args.n_best_size = val
        
    @property
    def beta1(self):
        return self.rear_verifier.beta1
    
    @beta1.setter
    def beta1(self, val):
        self.rear_verifier.beta1 = val
        
    @property
    def beta2(self):
        return self.rear_verifier.beta2
    
    @beta2.setter
    def beta2(self, val):
        self.rear_verifier.beta2 = val
        
    @property
    def best_cof(self):
        return self.rear_verifier.best_cof
    
    @best_cof.setter
    def best_cof(self, val):
        self.rear_verifier.best_cof = val
        
    @property
    def rear_threshold(self):
        return self.rear_verifier.thresh
    
    @rear_threshold.setter
    def rear_threshold(self, val):
        self.rear_verifier.thresh = val