import pandas as pd from nltk.corpus import stopwords from textblob import Word, TextBlob stop_words=stopwords.words('english') from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer def replace_non_alphanumeric(text): result = "" for char in text: if char.isalnum() or char.isspace(): result += char return result def preprocess_texts(text): processed_text = replace_non_alphanumeric(text) processed_text = " ".join(word for word in processed_text.split() if word not in stop_words) processed_text = " ".join(Word(word).lemmatize() for word in processed_text.split()) return processed_text def get_polarity_subjectivity(preprocess_text): processed_text=preprocess_texts(preprocess_text) polarity = TextBlob(processed_text).sentiment[0] subjectivity = TextBlob(processed_text).sentiment[1] return polarity, subjectivity def sentiment_analysis(text): processed_text=preprocess_texts(text) sia=SentimentIntensityAnalyzer() sentiment=sia.polarity_scores(text) return sentiment # use microphone input in the future. text=input() dict_sentiment = (sentiment_analysis(text)) score = dict_sentiment['compound'] if score < -.3: print("Alert")