flx8lora / app.py
fantos's picture
Update app.py
2de95f9 verified
raw
history blame
8.35 kB
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# Custom CSS
css = """
footer {display: none !important}
.gradio-container {max-width: 1200px; margin: auto;}
.contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed (for reproducibility)",
value=3413,
precision=0
)
generate_btn = gr.Button(
"โœจ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒ… Cinematic Landscape</p>
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐Ÿ–ผ๏ธ Fantasy Portrait</p>
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒƒ Cyberpunk Scene</p>
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŽจ Abstract Art</p>
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ŸŒฟ Macro Nature</p>
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
</div>
<h4 style="margin: 1em 0 0.5em 0;">Tips for best results:</h4>
<ul style="margin: 0; padding-left: 1.2em;">
<li>Be specific in your descriptions</li>
<li>Include details about style, lighting, and mood</li>
<li>Reference specific artists or techniques</li>
<li>Experiment with different guidance scales</li>
</ul>
</div>
""")
with gr.Column(scale=4):
output = gr.Image(label="Generated Image")
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
generate_btn.click(
process_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=output
)
if __name__ == "__main__":
demo.launch()