Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,21 +42,22 @@ def save_generated_image(image, prompt):
|
|
| 42 |
|
| 43 |
return filepath
|
| 44 |
|
|
|
|
| 45 |
@spaces.GPU(duration=120)
|
| 46 |
def inference(
|
| 47 |
-
prompt
|
| 48 |
-
seed
|
| 49 |
-
randomize_seed
|
| 50 |
-
width
|
| 51 |
-
height
|
| 52 |
-
guidance_scale
|
| 53 |
-
num_inference_steps
|
| 54 |
-
lora_scale
|
| 55 |
-
progress
|
| 56 |
):
|
| 57 |
if randomize_seed:
|
| 58 |
seed = random.randint(0, MAX_SEED)
|
| 59 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 60 |
|
| 61 |
image = pipeline(
|
| 62 |
prompt=prompt,
|
|
@@ -74,6 +75,19 @@ def inference(
|
|
| 74 |
# Return just the image and seed
|
| 75 |
return image, seed
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# Updated examples with 1880s clothing style
|
| 78 |
examples = [
|
| 79 |
"Cézanne's painting of a lively outdoor gathering in the 1880s, with men in formal top hats, frock coats, and women in bustled dresses with elaborate hats, enjoying a summer afternoon. The scene captures the Belle Époque atmosphere with dappled sunlight filtering through trees, highlighting the fashionable attire of the period. [trigger]",
|
|
@@ -86,15 +100,6 @@ examples = [
|
|
| 86 |
|
| 87 |
# First example for preloading
|
| 88 |
default_prompt = examples[0]
|
| 89 |
-
default_settings = {
|
| 90 |
-
"seed": 42,
|
| 91 |
-
"randomize_seed": True,
|
| 92 |
-
"width": 1024,
|
| 93 |
-
"height": 768,
|
| 94 |
-
"guidance_scale": 3.5,
|
| 95 |
-
"num_inference_steps": 30,
|
| 96 |
-
"lora_scale": 1.0
|
| 97 |
-
}
|
| 98 |
|
| 99 |
# Improved custom CSS with better visuals
|
| 100 |
custom_css = """
|
|
@@ -185,19 +190,9 @@ button:hover {
|
|
| 185 |
}
|
| 186 |
"""
|
| 187 |
|
| 188 |
-
#
|
| 189 |
def preload_example():
|
| 190 |
-
|
| 191 |
-
image, seed_value = inference(
|
| 192 |
-
prompt=default_prompt,
|
| 193 |
-
seed=default_settings["seed"],
|
| 194 |
-
randomize_seed=default_settings["randomize_seed"],
|
| 195 |
-
width=default_settings["width"],
|
| 196 |
-
height=default_settings["height"],
|
| 197 |
-
guidance_scale=default_settings["guidance_scale"],
|
| 198 |
-
num_inference_steps=default_settings["num_inference_steps"],
|
| 199 |
-
lora_scale=default_settings["lora_scale"],
|
| 200 |
-
)
|
| 201 |
return default_prompt, image, seed_value
|
| 202 |
|
| 203 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
@@ -229,9 +224,9 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
| 229 |
minimum=0,
|
| 230 |
maximum=MAX_SEED,
|
| 231 |
step=1,
|
| 232 |
-
value=
|
| 233 |
)
|
| 234 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
width = gr.Slider(
|
|
@@ -239,14 +234,14 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
| 239 |
minimum=256,
|
| 240 |
maximum=MAX_IMAGE_SIZE,
|
| 241 |
step=32,
|
| 242 |
-
value=
|
| 243 |
)
|
| 244 |
height = gr.Slider(
|
| 245 |
label="Height",
|
| 246 |
minimum=256,
|
| 247 |
maximum=MAX_IMAGE_SIZE,
|
| 248 |
step=32,
|
| 249 |
-
value=
|
| 250 |
)
|
| 251 |
|
| 252 |
with gr.Row():
|
|
@@ -255,30 +250,30 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
| 255 |
minimum=0.0,
|
| 256 |
maximum=10.0,
|
| 257 |
step=0.1,
|
| 258 |
-
value=
|
| 259 |
)
|
| 260 |
num_inference_steps = gr.Slider(
|
| 261 |
label="Number of inference steps",
|
| 262 |
minimum=1,
|
| 263 |
maximum=50,
|
| 264 |
step=1,
|
| 265 |
-
value=
|
| 266 |
)
|
| 267 |
lora_scale = gr.Slider(
|
| 268 |
label="LoRA scale",
|
| 269 |
minimum=0.0,
|
| 270 |
maximum=1.0,
|
| 271 |
step=0.1,
|
| 272 |
-
value=
|
| 273 |
)
|
| 274 |
|
| 275 |
with gr.Group(elem_classes="example-region"):
|
| 276 |
gr.Markdown("### Examples")
|
| 277 |
gr.Examples(
|
| 278 |
examples=examples,
|
| 279 |
-
inputs=
|
| 280 |
outputs=[result, seed_output],
|
| 281 |
-
fn=
|
| 282 |
cache_examples=True,
|
| 283 |
)
|
| 284 |
|
|
@@ -299,7 +294,7 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
| 299 |
outputs=[result, seed_output],
|
| 300 |
)
|
| 301 |
|
| 302 |
-
# Preload the first example when the app starts
|
| 303 |
demo.load(
|
| 304 |
fn=preload_example,
|
| 305 |
inputs=None,
|
|
|
|
| 42 |
|
| 43 |
return filepath
|
| 44 |
|
| 45 |
+
# Fixed inference function - properly handle Progress parameter
|
| 46 |
@spaces.GPU(duration=120)
|
| 47 |
def inference(
|
| 48 |
+
prompt,
|
| 49 |
+
seed=42,
|
| 50 |
+
randomize_seed=True,
|
| 51 |
+
width=1024,
|
| 52 |
+
height=768,
|
| 53 |
+
guidance_scale=3.5,
|
| 54 |
+
num_inference_steps=30,
|
| 55 |
+
lora_scale=1.0,
|
| 56 |
+
progress=None,
|
| 57 |
):
|
| 58 |
if randomize_seed:
|
| 59 |
seed = random.randint(0, MAX_SEED)
|
| 60 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 61 |
|
| 62 |
image = pipeline(
|
| 63 |
prompt=prompt,
|
|
|
|
| 75 |
# Return just the image and seed
|
| 76 |
return image, seed
|
| 77 |
|
| 78 |
+
# Create version for examples
|
| 79 |
+
def example_inference(prompt):
|
| 80 |
+
return inference(
|
| 81 |
+
prompt=prompt,
|
| 82 |
+
seed=42,
|
| 83 |
+
randomize_seed=True,
|
| 84 |
+
width=1024,
|
| 85 |
+
height=768,
|
| 86 |
+
guidance_scale=3.5,
|
| 87 |
+
num_inference_steps=30,
|
| 88 |
+
lora_scale=1.0
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
# Updated examples with 1880s clothing style
|
| 92 |
examples = [
|
| 93 |
"Cézanne's painting of a lively outdoor gathering in the 1880s, with men in formal top hats, frock coats, and women in bustled dresses with elaborate hats, enjoying a summer afternoon. The scene captures the Belle Époque atmosphere with dappled sunlight filtering through trees, highlighting the fashionable attire of the period. [trigger]",
|
|
|
|
| 100 |
|
| 101 |
# First example for preloading
|
| 102 |
default_prompt = examples[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
# Improved custom CSS with better visuals
|
| 105 |
custom_css = """
|
|
|
|
| 190 |
}
|
| 191 |
"""
|
| 192 |
|
| 193 |
+
# Fixed preload function
|
| 194 |
def preload_example():
|
| 195 |
+
image, seed_value = inference(prompt=default_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
return default_prompt, image, seed_value
|
| 197 |
|
| 198 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
|
|
| 224 |
minimum=0,
|
| 225 |
maximum=MAX_SEED,
|
| 226 |
step=1,
|
| 227 |
+
value=42,
|
| 228 |
)
|
| 229 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 230 |
|
| 231 |
with gr.Row():
|
| 232 |
width = gr.Slider(
|
|
|
|
| 234 |
minimum=256,
|
| 235 |
maximum=MAX_IMAGE_SIZE,
|
| 236 |
step=32,
|
| 237 |
+
value=1024,
|
| 238 |
)
|
| 239 |
height = gr.Slider(
|
| 240 |
label="Height",
|
| 241 |
minimum=256,
|
| 242 |
maximum=MAX_IMAGE_SIZE,
|
| 243 |
step=32,
|
| 244 |
+
value=768,
|
| 245 |
)
|
| 246 |
|
| 247 |
with gr.Row():
|
|
|
|
| 250 |
minimum=0.0,
|
| 251 |
maximum=10.0,
|
| 252 |
step=0.1,
|
| 253 |
+
value=3.5,
|
| 254 |
)
|
| 255 |
num_inference_steps = gr.Slider(
|
| 256 |
label="Number of inference steps",
|
| 257 |
minimum=1,
|
| 258 |
maximum=50,
|
| 259 |
step=1,
|
| 260 |
+
value=30,
|
| 261 |
)
|
| 262 |
lora_scale = gr.Slider(
|
| 263 |
label="LoRA scale",
|
| 264 |
minimum=0.0,
|
| 265 |
maximum=1.0,
|
| 266 |
step=0.1,
|
| 267 |
+
value=1.0,
|
| 268 |
)
|
| 269 |
|
| 270 |
with gr.Group(elem_classes="example-region"):
|
| 271 |
gr.Markdown("### Examples")
|
| 272 |
gr.Examples(
|
| 273 |
examples=examples,
|
| 274 |
+
inputs=prompt,
|
| 275 |
outputs=[result, seed_output],
|
| 276 |
+
fn=example_inference, # Use the simplified example function
|
| 277 |
cache_examples=True,
|
| 278 |
)
|
| 279 |
|
|
|
|
| 294 |
outputs=[result, seed_output],
|
| 295 |
)
|
| 296 |
|
| 297 |
+
# Preload the first example when the app starts
|
| 298 |
demo.load(
|
| 299 |
fn=preload_example,
|
| 300 |
inputs=None,
|