Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import torch | |
import spaces | |
from diffusers import FluxPipeline, FluxTransformer2DModel | |
from diffusers.utils import export_to_gif | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import uuid | |
import random | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
# ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ์์ | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch_dtype, | |
use_safetensors=True | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
def split_image(input_image, num_splits=8): | |
width = input_image.width | |
height = input_image.height | |
split_width = width // num_splits | |
output_images = [] | |
for i in range(num_splits): | |
left = i * split_width | |
right = (i + 1) * split_width | |
box = (left, 0, right, height) | |
split = input_image.crop(box) | |
# ์ด๋ฏธ์ง ํ์ง ๊ฐ์ ์ ์ํ ์ฒ๋ฆฌ | |
split = split.convert('RGB') | |
output_images.append(split) | |
return output_images | |
def infer(prompt, seed=1, randomize_seed=False, num_inference_steps=20, progress=gr.Progress(track_tqdm=True)): | |
progress(0, desc="Starting...") | |
prompt_template = f"A single clear frame of {prompt}. The scene should show only one moment of the action, high quality, detailed, centered composition." | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
frames = [] | |
total_frames = 8 | |
# ์งํ ์ํฉ์ ๋ ์ธ๋ฐํ๊ฒ ํ์ | |
for i in range(total_frames): | |
current_progress = (i / total_frames) * 0.8 | |
progress(current_progress, desc=f"๐จ Generating frame {i+1}/{total_frames}") | |
frame_prompt = f"{prompt_template} Frame {i+1} of sequence." | |
frame_seed = seed + i | |
generator = torch.Generator().manual_seed(frame_seed) | |
# ๊ฐ ํ๋ ์์ ์์ฑ ๋จ๊ณ๋ ํ์ | |
for step in range(num_inference_steps): | |
step_progress = current_progress + (step / num_inference_steps) * (0.8 / total_frames) | |
progress(step_progress, desc=f"Frame {i+1}/{total_frames} - Step {step+1}/{num_inference_steps}") | |
frame = pipe( | |
prompt=frame_prompt, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
generator=generator, | |
height=320, | |
width=320, | |
guidance_scale=7.5, | |
).images[0] | |
frames.append(frame) | |
progress((i + 1) / total_frames * 0.8, desc=f"โ Completed frame {i+1}/{total_frames}") | |
progress(0.9, desc="๐ฌ Creating GIF...") | |
gif_name = f"{uuid.uuid4().hex}-flux.gif" | |
export_to_gif(frames, gif_name, fps=8) | |
total_width = 320 * total_frames | |
preview_image = Image.new('RGB', (total_width, 320)) | |
for i, frame in enumerate(frames): | |
preview_image.paste(frame, (i * 320, 0)) | |
progress(1.0, desc="โจ Done!") | |
return gif_name, preview_image, seed | |
def create_preview_image(frames): | |
"""ํ๋ ์๋ค์ ๊ฐ๋ก๋ก ์ฐ๊ฒฐํ์ฌ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ์ด๋ฏธ์ง ์์ฑ""" | |
total_width = sum(frame.width for frame in frames) | |
max_height = max(frame.height for frame in frames) | |
preview = Image.new('RGB', (total_width, max_height)) | |
x_offset = 0 | |
for frame in frames: | |
preview.paste(frame, (x_offset, 0)) | |
x_offset += frame.width | |
return preview | |
examples = [ | |
"a red panda in mid-backflip", | |
"an astronaut floating in space", | |
"a butterfly spreading its wings", | |
"a robot arm painting with a brush", | |
"a dragon egg with cracks appearing", | |
"a person stepping through a glowing portal", | |
"a mermaid swimming underwater", | |
"a steampunk clock gear turning", | |
"a flower bud slowly opening", | |
"a wizard with magical energy swirling" | |
] | |
css = """ | |
(์ด์ CSS์ ๋์ผ) | |
/* Examples ์์ญ ์คํ์ผ ์์ ์ฌ์ ์ */ | |
.gr-examples-parent { | |
background: transparent !important; | |
} | |
.gr-examples-parent > div { | |
background: transparent !important; | |
} | |
.gr-examples { | |
background: transparent !important; | |
} | |
.gr-examples * { | |
background: transparent !important; | |
} | |
.gr-samples-table { | |
background: transparent !important; | |
} | |
.gr-samples-table > div { | |
background: transparent !important; | |
} | |
.gr-samples-table button { | |
background: transparent !important; | |
border: none !important; | |
box-shadow: none !important; | |
} | |
.gr-samples-table button:hover { | |
background: rgba(0,0,0,0.05) !important; | |
} | |
div[class*="examples"] { | |
background: transparent !important; | |
} | |
/* ํ๋ก๊ทธ๋ ์ค ๋ฐ ์คํ์ผ ๊ฐํ */ | |
.progress-bar { | |
background-color: #f0f0f0; | |
border-radius: 10px; | |
padding: 5px; | |
margin: 15px 0; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
} | |
.progress-bar-fill { | |
background: linear-gradient(45deg, #FF6B6B, #4ECDC4); | |
height: 25px; | |
border-radius: 7px; | |
transition: width 0.3s ease-out; | |
box-shadow: 0 2px 5px rgba(0,0,0,0.1); | |
} | |
.progress-text { | |
color: black; | |
font-weight: 600; | |
margin-bottom: 8px; | |
font-size: 1.1em; | |
} | |
/* ์งํ ์ํ ํ ์คํธ ์คํ์ผ */ | |
.progress-label { | |
display: block; | |
text-align: center; | |
margin-top: 5px; | |
color: #666; | |
font-size: 0.9em; | |
} | |
""" | |
def create_snow_effect(): | |
# CSS ์คํ์ผ ์ ์ | |
snow_css = """ | |
@keyframes snowfall { | |
0% { | |
transform: translateY(-10vh) translateX(0); | |
opacity: 1; | |
} | |
100% { | |
transform: translateY(100vh) translateX(100px); | |
opacity: 0.3; | |
} | |
} | |
.snowflake { | |
position: fixed; | |
color: white; | |
font-size: 1.5em; | |
user-select: none; | |
z-index: 1000; | |
pointer-events: none; | |
animation: snowfall linear infinite; | |
} | |
""" | |
# JavaScript ์ฝ๋ ์ ์ | |
snow_js = """ | |
function createSnowflake() { | |
const snowflake = document.createElement('div'); | |
snowflake.innerHTML = 'โ'; | |
snowflake.className = 'snowflake'; | |
snowflake.style.left = Math.random() * 100 + 'vw'; | |
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's'; | |
snowflake.style.opacity = Math.random(); | |
document.body.appendChild(snowflake); | |
setTimeout(() => { | |
snowflake.remove(); | |
}, 5000); | |
} | |
setInterval(createSnowflake, 200); | |
""" | |
# CSS์ JavaScript๋ฅผ ๊ฒฐํฉํ HTML | |
snow_html = f""" | |
<style> | |
{snow_css} | |
</style> | |
<script> | |
{snow_js} | |
</script> | |
""" | |
return gr.HTML(snow_html) | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; max-width: 800px; margin: 0 auto;"> | |
<h1 style="font-size: 3rem; font-weight: 700; margin-bottom: 1rem;"> | |
FLUX Animation Creator | |
</h1> | |
<p style="font-size: 1.2rem; color: #666; margin-bottom: 2rem;"> | |
Create amazing animated GIFs with AI - Just describe what you want to see! | |
</p> | |
</div> | |
""") | |
create_snow_effect() | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Your Animation Prompt", | |
show_label=True, | |
max_lines=1, | |
placeholder="Describe the animation you want to create...", | |
container=True, | |
elem_id="prompt-input" | |
) | |
run_button = gr.Button("โจ Generate", scale=0, variant="primary") | |
result = gr.Image( | |
label="Generated Animation", | |
show_label=True, | |
elem_id="main-output", | |
height=500 | |
) | |
with gr.Row(): | |
result_full = gr.Image( | |
label="Preview", | |
elem_id="preview-output", | |
height=200 | |
) | |
strip_image = gr.Image( | |
label="Animation Strip", | |
elem_id="strip-output", | |
height=150 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=25, | |
step=1, | |
value=20, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
outputs=[result, result_full, seed], | |
fn=infer, | |
cache_examples=True, | |
label="Click on any example to try it out" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, num_inference_steps], | |
outputs=[result, result_full, seed] | |
) | |
demo.theme = gr.themes.Default().set( | |
body_text_color="black", | |
block_label_text_color="black", | |
block_title_text_color="black", | |
body_text_color_subdued="black", | |
background_fill_primary="white" | |
) | |
demo.queue().launch() |