Spaces:
Running
Running
| import json | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| import uvicorn | |
| from countries import make_country_table | |
| from fastapi import FastAPI, Request | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.middleware.gzip import GZipMiddleware | |
| from fastapi.responses import JSONResponse | |
| from fastapi.staticfiles import StaticFiles | |
| scores = pd.read_json("results.json") | |
| languages = pd.read_json("languages.json") | |
| models = pd.read_json("models.json") | |
| def mean(lst): | |
| return sum(lst) / len(lst) if lst else None | |
| task_metrics = [ | |
| "translation_from_bleu", | |
| "translation_to_bleu", | |
| "classification_accuracy", | |
| "mmlu_accuracy", | |
| "arc_accuracy", | |
| "truthfulqa_accuracy", | |
| "mgsm_accuracy", | |
| ] | |
| def compute_normalized_average(df, metrics): | |
| """Compute average of min-max normalized metric columns.""" | |
| normalized_df = df[metrics].copy() | |
| for col in metrics: | |
| if col in normalized_df.columns: | |
| col_min = normalized_df[col].min() | |
| col_max = normalized_df[col].max() | |
| if col_max > col_min: # Avoid division by zero | |
| normalized_df[col] = (normalized_df[col] - col_min) / (col_max - col_min) | |
| else: | |
| normalized_df[col] = 0 # If all values are the same, set to 0 | |
| return normalized_df.mean(axis=1, skipna=False) | |
| def make_model_table(df, models): | |
| df = ( | |
| df.groupby(["model", "task", "metric"]) | |
| .agg({"score": "mean", "bcp_47": "nunique"}) | |
| .reset_index() | |
| ) | |
| df["task_metric"] = df["task"] + "_" + df["metric"] | |
| df = df.drop(columns=["task", "metric"]) | |
| df = df.pivot(index="model", columns="task_metric", values="score") | |
| for metric in task_metrics: | |
| if metric not in df.columns: | |
| df[metric] = np.nan | |
| df["average"] = compute_normalized_average(df, task_metrics) | |
| df = df.sort_values(by="average", ascending=False).reset_index() | |
| df = pd.merge(df, models, left_on="model", right_on="id", how="left") | |
| df["rank"] = df.index + 1 | |
| df = df[ | |
| [ | |
| "rank", | |
| "model", | |
| "name", | |
| "provider_name", | |
| "hf_id", | |
| "creation_date", | |
| "size", | |
| "type", | |
| "license", | |
| "cost", | |
| "average", | |
| *task_metrics, | |
| ] | |
| ] | |
| return df | |
| def make_language_table(df, languages): | |
| df = ( | |
| df.groupby(["bcp_47", "task", "metric"]) | |
| .agg({"score": "mean", "model": "nunique"}) | |
| .reset_index() | |
| ) | |
| df["task_metric"] = df["task"] + "_" + df["metric"] | |
| df = df.drop(columns=["task", "metric"]) | |
| df = df.pivot(index="bcp_47", columns="task_metric", values="score").reset_index() | |
| for metric in task_metrics: | |
| if metric not in df.columns: | |
| df[metric] = np.nan | |
| df["average"] = compute_normalized_average(df, task_metrics) | |
| df = pd.merge(languages, df, on="bcp_47", how="outer") | |
| df = df.sort_values(by="speakers", ascending=False) | |
| df = df[ | |
| [ | |
| "bcp_47", | |
| "language_name", | |
| "autonym", | |
| "speakers", | |
| "family", | |
| "average", | |
| "in_benchmark", | |
| *task_metrics, | |
| ] | |
| ] | |
| return df | |
| app = FastAPI() | |
| app.add_middleware(CORSMiddleware, allow_origins=["*"]) | |
| app.add_middleware(GZipMiddleware, minimum_size=1000) | |
| def serialize(df): | |
| return df.replace({np.nan: None}).to_dict(orient="records") | |
| async def data(request: Request): | |
| body = await request.body() | |
| data = json.loads(body) | |
| selected_languages = data.get("selectedLanguages", {}) | |
| df = scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index() | |
| # lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer") | |
| language_table = make_language_table(df, languages) | |
| datasets_df = pd.read_json("datasets.json") | |
| if selected_languages: | |
| # the filtering is only applied for the model table and the country data | |
| df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)] | |
| if len(df) == 0: | |
| model_table = pd.DataFrame() | |
| countries = pd.DataFrame() | |
| else: | |
| model_table = make_model_table(df, models) | |
| countries = make_country_table(make_language_table(df, languages)) | |
| all_tables = { | |
| "model_table": serialize(model_table), | |
| "language_table": serialize(language_table), | |
| "dataset_table": serialize(datasets_df), | |
| "countries": serialize(countries), | |
| } | |
| return JSONResponse(content=all_tables) | |
| # Only serve static files if build directory exists (production mode) | |
| if os.path.exists("frontend/build"): | |
| app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend") | |
| else: | |
| print("π§ͺ Development mode: frontend/build directory not found") | |
| print("π Frontend should be running on http://localhost:3000") | |
| print("π‘ API available at http://localhost:8000/api/data") | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000))) | |