David Pomerenke
commited on
Commit
·
9983b5f
1
Parent(s):
2f9dee1
Use most popular current + historical models
Browse files- evals/main.py +0 -2
- evals/models.py +41 -8
evals/main.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
import asyncio
|
| 2 |
-
import json
|
| 3 |
|
| 4 |
-
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
from tqdm.asyncio import tqdm_asyncio
|
| 7 |
|
|
|
|
| 1 |
import asyncio
|
|
|
|
| 2 |
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from tqdm.asyncio import tqdm_asyncio
|
| 5 |
|
evals/models.py
CHANGED
|
@@ -28,8 +28,8 @@ models = [
|
|
| 28 |
"openai/gpt-3.5-turbo", # 1.5$
|
| 29 |
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev
|
| 30 |
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
|
| 31 |
-
"mistralai/mistral-saba",
|
| 32 |
-
"mistralai/mistral-nemo",
|
| 33 |
"google/gemini-2.5-flash-preview", # 0.6$
|
| 34 |
"google/gemini-2.0-flash-lite-001", # 0.3$
|
| 35 |
"google/gemma-3-27b-it", # 0.2$
|
|
@@ -38,7 +38,7 @@ models = [
|
|
| 38 |
# "qwen/qwen-2.5-72b-instruct", # 0.39$
|
| 39 |
# "qwen/qwen-2-72b-instruct", # 0.9$
|
| 40 |
"deepseek/deepseek-chat-v3-0324", # 1.1$
|
| 41 |
-
"deepseek/deepseek-chat",
|
| 42 |
"microsoft/phi-4", # 0.07$
|
| 43 |
"microsoft/phi-4-multimodal-instruct", # 0.1$
|
| 44 |
"amazon/nova-micro-v1", # 0.09$
|
|
@@ -55,7 +55,18 @@ cache = Memory(location=".cache", verbose=0).cache
|
|
| 55 |
|
| 56 |
|
| 57 |
@cache
|
| 58 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
raw = get("https://openrouter.ai/rankings").text
|
| 60 |
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
|
| 61 |
data = json.loads(data.replace("\\", ""))
|
|
@@ -66,11 +77,25 @@ def get_popular_models(date: date):
|
|
| 66 |
continue
|
| 67 |
counts[model.split(":")[0]] += count
|
| 68 |
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
|
| 69 |
-
return [model for model, _ in counts]
|
| 70 |
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
load_dotenv()
|
| 76 |
client = AsyncOpenAI(
|
|
@@ -125,10 +150,12 @@ async def transcribe(path, model="elevenlabs/scribe_v1"):
|
|
| 125 |
|
| 126 |
models = pd.DataFrame(models, columns=["id"])
|
| 127 |
|
|
|
|
| 128 |
@cache
|
| 129 |
def get_models(date):
|
| 130 |
return get("https://openrouter.ai/api/frontend/models/").json()["data"]
|
| 131 |
|
|
|
|
| 132 |
def get_or_metadata(id):
|
| 133 |
# get metadata from OpenRouter
|
| 134 |
models = get_models(date.today())
|
|
@@ -156,7 +183,12 @@ def get_hf_metadata(row):
|
|
| 156 |
return empty
|
| 157 |
try:
|
| 158 |
info = api.model_info(id)
|
| 159 |
-
license = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
return {
|
| 161 |
"hf_id": info.id,
|
| 162 |
"creation_date": info.created_at,
|
|
@@ -190,3 +222,4 @@ models = models.assign(
|
|
| 190 |
license=hf_metadata.str["license"],
|
| 191 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
| 192 |
)
|
|
|
|
|
|
| 28 |
"openai/gpt-3.5-turbo", # 1.5$
|
| 29 |
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev
|
| 30 |
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
|
| 31 |
+
"mistralai/mistral-saba", # 0.6$
|
| 32 |
+
"mistralai/mistral-nemo", # 0.08$
|
| 33 |
"google/gemini-2.5-flash-preview", # 0.6$
|
| 34 |
"google/gemini-2.0-flash-lite-001", # 0.3$
|
| 35 |
"google/gemma-3-27b-it", # 0.2$
|
|
|
|
| 38 |
# "qwen/qwen-2.5-72b-instruct", # 0.39$
|
| 39 |
# "qwen/qwen-2-72b-instruct", # 0.9$
|
| 40 |
"deepseek/deepseek-chat-v3-0324", # 1.1$
|
| 41 |
+
"deepseek/deepseek-chat", # 0.89$
|
| 42 |
"microsoft/phi-4", # 0.07$
|
| 43 |
"microsoft/phi-4-multimodal-instruct", # 0.1$
|
| 44 |
"amazon/nova-micro-v1", # 0.09$
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
@cache
|
| 58 |
+
def get_models(date: date):
|
| 59 |
+
return get("https://openrouter.ai/api/frontend/models").json()["data"]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_slug(permaslug):
|
| 63 |
+
models = get_models(date.today())
|
| 64 |
+
slugs = [m["slug"] for m in models if m["permaslug"] == permaslug]
|
| 65 |
+
return slugs[0] if len(slugs) == 1 else None
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@cache
|
| 69 |
+
def get_historical_popular_models(date: date):
|
| 70 |
raw = get("https://openrouter.ai/rankings").text
|
| 71 |
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
|
| 72 |
data = json.loads(data.replace("\\", ""))
|
|
|
|
| 77 |
continue
|
| 78 |
counts[model.split(":")[0]] += count
|
| 79 |
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
|
| 80 |
+
return [get_slug(model) for model, _ in counts]
|
| 81 |
|
| 82 |
|
| 83 |
+
@cache
|
| 84 |
+
def get_current_popular_models(date: date):
|
| 85 |
+
raw = get("https://openrouter.ai/rankings").text
|
| 86 |
+
data = re.search(r'{\\"rankMap\\":(.*)\}\]\\n"\]\)</script>', raw).group(1)
|
| 87 |
+
data = json.loads(data.replace("\\", ""))["day"]
|
| 88 |
+
data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True)
|
| 89 |
+
return [get_slug(model["model_permaslug"]) for model in data]
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
models += [
|
| 93 |
+
m for m in get_historical_popular_models(date.today()) if m and m not in models
|
| 94 |
+
][:5]
|
| 95 |
+
models += [
|
| 96 |
+
m for m in get_current_popular_models(date.today()) if m and m not in models
|
| 97 |
+
][:5]
|
| 98 |
+
|
| 99 |
|
| 100 |
load_dotenv()
|
| 101 |
client = AsyncOpenAI(
|
|
|
|
| 150 |
|
| 151 |
models = pd.DataFrame(models, columns=["id"])
|
| 152 |
|
| 153 |
+
|
| 154 |
@cache
|
| 155 |
def get_models(date):
|
| 156 |
return get("https://openrouter.ai/api/frontend/models/").json()["data"]
|
| 157 |
|
| 158 |
+
|
| 159 |
def get_or_metadata(id):
|
| 160 |
# get metadata from OpenRouter
|
| 161 |
models = get_models(date.today())
|
|
|
|
| 183 |
return empty
|
| 184 |
try:
|
| 185 |
info = api.model_info(id)
|
| 186 |
+
license = (
|
| 187 |
+
(info.card_data.license or "")
|
| 188 |
+
.replace("-", " ")
|
| 189 |
+
.replace("mit", "MIT")
|
| 190 |
+
.title()
|
| 191 |
+
)
|
| 192 |
return {
|
| 193 |
"hf_id": info.id,
|
| 194 |
"creation_date": info.created_at,
|
|
|
|
| 222 |
license=hf_metadata.str["license"],
|
| 223 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
| 224 |
)
|
| 225 |
+
models = models[models["cost"] <= 2.0].reset_index(drop=True)
|