David Pomerenke
commited on
Commit
·
7a9c651
1
Parent(s):
9f25f4c
Better results format (flatten + aggregate 3x), push results to hub
Browse files- evals.py +85 -157
- results.json +0 -0
evals.py
CHANGED
|
@@ -12,9 +12,10 @@ import evaluate
|
|
| 12 |
import pandas as pd
|
| 13 |
import requests
|
| 14 |
from aiolimiter import AsyncLimiter
|
|
|
|
| 15 |
from dotenv import load_dotenv
|
| 16 |
from elevenlabs import AsyncElevenLabs
|
| 17 |
-
from huggingface_hub import AsyncInferenceClient
|
| 18 |
from joblib.memory import Memory
|
| 19 |
from langcodes import Language, standardize_tag
|
| 20 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
|
@@ -274,13 +275,19 @@ async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
|
|
| 274 |
else:
|
| 275 |
bleu_score = {"bleu": 0}
|
| 276 |
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
|
| 277 |
-
return
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
|
|
@@ -331,16 +338,20 @@ async def classify_and_evaluate(model, language_bcp_47, nr):
|
|
| 331 |
max_tokens=5,
|
| 332 |
)
|
| 333 |
try:
|
| 334 |
-
|
| 335 |
except ValueError:
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
|
| 346 |
def corrupt_sentence(sentence):
|
|
@@ -381,12 +392,16 @@ async def mlm_and_evaluate(model, language_bcp_47, nr):
|
|
| 381 |
)
|
| 382 |
prediction = reply.choices[0].message.content.strip()
|
| 383 |
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
|
| 384 |
-
return
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
|
| 392 |
@cache
|
|
@@ -440,16 +455,25 @@ async def transcribe_and_evaluate(model, language_bcp_47, nr):
|
|
| 440 |
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
|
| 441 |
pred = await transcribe(path, model=model)
|
| 442 |
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
|
|
|
|
|
|
| 451 |
|
| 452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
# ===== run evaluation and aggregate results =====
|
| 454 |
|
| 455 |
|
|
@@ -458,9 +482,10 @@ def mean(lst):
|
|
| 458 |
|
| 459 |
|
| 460 |
async def main():
|
| 461 |
-
print("
|
| 462 |
-
|
| 463 |
-
|
|
|
|
| 464 |
for i in range(n_sentences)
|
| 465 |
for original_language in langs_eval.itertuples()
|
| 466 |
for model in models
|
|
@@ -470,130 +495,33 @@ async def main():
|
|
| 470 |
or original_language.bcp_47 in langs_eval_detailed.bcp_47.values
|
| 471 |
)
|
| 472 |
]
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
for i in range(n_sentences)
|
| 478 |
-
for language in langs_eval.itertuples()
|
| 479 |
-
for model in models
|
| 480 |
-
if language.in_benchmark
|
| 481 |
-
and (
|
| 482 |
-
model == model_fast or language.bcp_47 in langs_eval_detailed.bcp_47.values
|
| 483 |
-
)
|
| 484 |
-
]
|
| 485 |
-
classification_scores = await tqdm_asyncio.gather(
|
| 486 |
-
*classification_scores, miniters=1
|
| 487 |
)
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
)
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
)
|
| 511 |
-
]
|
| 512 |
-
transcription_scores = await tqdm_asyncio.gather(*transcription_scores, miniters=1)
|
| 513 |
-
all_results = []
|
| 514 |
-
for language in languages.itertuples():
|
| 515 |
-
results = []
|
| 516 |
-
for model in models:
|
| 517 |
-
scores_mt = [
|
| 518 |
-
score
|
| 519 |
-
for score in translation_scores
|
| 520 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
| 521 |
-
]
|
| 522 |
-
scores_cls = [
|
| 523 |
-
score
|
| 524 |
-
for score in classification_scores
|
| 525 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
| 526 |
-
]
|
| 527 |
-
scores_mlm = [
|
| 528 |
-
score
|
| 529 |
-
for score in mlm_scores
|
| 530 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
| 531 |
-
]
|
| 532 |
-
if not scores_mt:
|
| 533 |
-
continue
|
| 534 |
-
mt_bleu = mean([s["mt_bleu"] for s in scores_mt])
|
| 535 |
-
mt_chrf = mean([s["mt_chrf"] for s in scores_mt])
|
| 536 |
-
cls_acc = mean([s["true"] == s["pred"] for s in scores_cls])
|
| 537 |
-
mlm_chrf = mean([s["mlm_chrf"] for s in scores_mlm])
|
| 538 |
-
t2t_score = (mt_chrf + cls_acc + mlm_chrf) / 3
|
| 539 |
-
results.append(
|
| 540 |
-
{
|
| 541 |
-
"model": model,
|
| 542 |
-
"model_type": "text-to-text",
|
| 543 |
-
"mt_bleu": mt_bleu,
|
| 544 |
-
"mt_chrf": mt_chrf,
|
| 545 |
-
"cls_acc": cls_acc,
|
| 546 |
-
"mlm_chrf": mlm_chrf,
|
| 547 |
-
"t2t_score": t2t_score,
|
| 548 |
-
}
|
| 549 |
-
)
|
| 550 |
-
for model in transcription_models:
|
| 551 |
-
scores_asr = [
|
| 552 |
-
score
|
| 553 |
-
for score in transcription_scores
|
| 554 |
-
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
| 555 |
-
]
|
| 556 |
-
if not scores_asr:
|
| 557 |
-
continue
|
| 558 |
-
asr_wer = mean([s["asr_wer"] for s in scores_asr])
|
| 559 |
-
asr_chrf = mean([s["asr_chrf"] for s in scores_asr])
|
| 560 |
-
results.append(
|
| 561 |
-
{
|
| 562 |
-
"model": model,
|
| 563 |
-
"model_type": "speech-to-text",
|
| 564 |
-
"asr_wer": asr_wer,
|
| 565 |
-
"asr_chrf": asr_chrf,
|
| 566 |
-
"s2t_score": (asr_wer + asr_chrf) / 2,
|
| 567 |
-
}
|
| 568 |
-
)
|
| 569 |
-
language_results = {
|
| 570 |
-
"language_name": language.language_name,
|
| 571 |
-
"bcp_47": language.bcp_47,
|
| 572 |
-
"speakers": language.speakers,
|
| 573 |
-
"scores": results,
|
| 574 |
-
"commonvoice_hours": language.commonvoice_hours
|
| 575 |
-
if not pd.isna(language.commonvoice_hours)
|
| 576 |
-
else None,
|
| 577 |
-
"commonvoice_locale": language.commonvoice_locale
|
| 578 |
-
if not pd.isna(language.commonvoice_locale)
|
| 579 |
-
else None,
|
| 580 |
-
"population": population(language.bcp_47),
|
| 581 |
-
"language_family": language_family(language.bcp_47),
|
| 582 |
-
}
|
| 583 |
-
for score in [
|
| 584 |
-
"mt_bleu",
|
| 585 |
-
"mt_chrf",
|
| 586 |
-
"cls_acc",
|
| 587 |
-
"mlm_chrf",
|
| 588 |
-
"asr_wer",
|
| 589 |
-
"asr_chrf",
|
| 590 |
-
"t2t_score",
|
| 591 |
-
"s2t_score",
|
| 592 |
-
]:
|
| 593 |
-
language_results[score] = mean([s[score] for s in results if score in s])
|
| 594 |
-
all_results.append(language_results)
|
| 595 |
-
with open("results.json", "w") as f:
|
| 596 |
-
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
| 597 |
|
| 598 |
|
| 599 |
if __name__ == "__main__":
|
|
|
|
| 12 |
import pandas as pd
|
| 13 |
import requests
|
| 14 |
from aiolimiter import AsyncLimiter
|
| 15 |
+
from datasets import Dataset
|
| 16 |
from dotenv import load_dotenv
|
| 17 |
from elevenlabs import AsyncElevenLabs
|
| 18 |
+
from huggingface_hub import AsyncInferenceClient, HfApi
|
| 19 |
from joblib.memory import Memory
|
| 20 |
from langcodes import Language, standardize_tag
|
| 21 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
|
|
|
| 275 |
else:
|
| 276 |
bleu_score = {"bleu": 0}
|
| 277 |
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
|
| 278 |
+
return [
|
| 279 |
+
{
|
| 280 |
+
"model": model,
|
| 281 |
+
"bcp_47": original_language["bcp_47"],
|
| 282 |
+
"task": "translation",
|
| 283 |
+
"metric": metric,
|
| 284 |
+
"score": score,
|
| 285 |
+
"sentence_nr": sentence_nr,
|
| 286 |
+
}
|
| 287 |
+
for metric, score in zip(
|
| 288 |
+
["bleu", "chrf"], [bleu_score["bleu"], chrf_score["score"] / 100]
|
| 289 |
+
)
|
| 290 |
+
]
|
| 291 |
|
| 292 |
|
| 293 |
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
|
|
|
|
| 338 |
max_tokens=5,
|
| 339 |
)
|
| 340 |
try:
|
| 341 |
+
pred = int(reply.choices[0].message.content.strip())
|
| 342 |
except ValueError:
|
| 343 |
+
pred = -1
|
| 344 |
+
true = topic_to_number(test_paragraph.topic)
|
| 345 |
+
return [
|
| 346 |
+
{
|
| 347 |
+
"model": model,
|
| 348 |
+
"bcp_47": language["bcp_47"],
|
| 349 |
+
"task": "classification",
|
| 350 |
+
"metric": "accuracy",
|
| 351 |
+
"score": int(pred == true),
|
| 352 |
+
"sentence_nr": nr,
|
| 353 |
+
}
|
| 354 |
+
]
|
| 355 |
|
| 356 |
|
| 357 |
def corrupt_sentence(sentence):
|
|
|
|
| 392 |
)
|
| 393 |
prediction = reply.choices[0].message.content.strip()
|
| 394 |
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
|
| 395 |
+
return [
|
| 396 |
+
{
|
| 397 |
+
"model": model,
|
| 398 |
+
"bcp_47": language["bcp_47"],
|
| 399 |
+
"task": "language_modeling",
|
| 400 |
+
"metric": "chrf",
|
| 401 |
+
"score": chrf_score["score"] / 100,
|
| 402 |
+
"sentence_nr": nr,
|
| 403 |
+
}
|
| 404 |
+
]
|
| 405 |
|
| 406 |
|
| 407 |
@cache
|
|
|
|
| 455 |
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
|
| 456 |
pred = await transcribe(path, model=model)
|
| 457 |
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
|
| 458 |
+
return [
|
| 459 |
+
{
|
| 460 |
+
"model": model,
|
| 461 |
+
"bcp_47": language["bcp_47"],
|
| 462 |
+
"task": "asr",
|
| 463 |
+
"metric": "wer",
|
| 464 |
+
"score": wer_score,
|
| 465 |
+
"sentence_nr": nr,
|
| 466 |
+
}
|
| 467 |
+
]
|
| 468 |
|
| 469 |
|
| 470 |
+
tasks = [
|
| 471 |
+
translate_and_evaluate,
|
| 472 |
+
classify_and_evaluate,
|
| 473 |
+
mlm_and_evaluate,
|
| 474 |
+
# transcribe_and_evaluate,
|
| 475 |
+
]
|
| 476 |
+
|
| 477 |
# ===== run evaluation and aggregate results =====
|
| 478 |
|
| 479 |
|
|
|
|
| 482 |
|
| 483 |
|
| 484 |
async def main():
|
| 485 |
+
print("running evaluations")
|
| 486 |
+
results = [
|
| 487 |
+
task(model, original_language.bcp_47, i)
|
| 488 |
+
for task in tasks
|
| 489 |
for i in range(n_sentences)
|
| 490 |
for original_language in langs_eval.itertuples()
|
| 491 |
for model in models
|
|
|
|
| 495 |
or original_language.bcp_47 in langs_eval_detailed.bcp_47.values
|
| 496 |
)
|
| 497 |
]
|
| 498 |
+
results = await tqdm_asyncio.gather(*results, miniters=1)
|
| 499 |
+
results = pd.DataFrame([r for rs in results for r in rs])
|
| 500 |
+
results = (
|
| 501 |
+
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
)
|
| 503 |
+
lang_results = (
|
| 504 |
+
results.groupby(["bcp_47", "task", "metric"])
|
| 505 |
+
.agg({"score": "mean", "model": "nunique"})
|
| 506 |
+
.reset_index()
|
| 507 |
+
)
|
| 508 |
+
lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
| 509 |
+
model_results = (
|
| 510 |
+
results.groupby(["model", "task", "metric"])
|
| 511 |
+
.agg({"score": "mean", "bcp_47": "nunique"})
|
| 512 |
+
.reset_index()
|
| 513 |
+
)
|
| 514 |
+
task_results = (
|
| 515 |
+
results.groupby(["task", "metric"])
|
| 516 |
+
.agg({"score": "mean", "bcp_47": "nunique", "model": "nunique"})
|
| 517 |
+
.reset_index()
|
| 518 |
+
)
|
| 519 |
+
HF_REPO = "datenlabor-bmz/global-language-ai-evals"
|
| 520 |
+
HF_TOKEN = getenv("HUGGINGFACE_ACCESS_TOKEN")
|
| 521 |
+
Dataset.from_pandas(results).push_to_hub(HF_REPO, "scores", token=HF_TOKEN)
|
| 522 |
+
Dataset.from_pandas(lang_results).push_to_hub(HF_REPO, "languages", token=HF_TOKEN)
|
| 523 |
+
Dataset.from_pandas(model_results).push_to_hub(HF_REPO, "models", token=HF_TOKEN)
|
| 524 |
+
Dataset.from_pandas(task_results).push_to_hub(HF_REPO, "tasks", token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
|
| 527 |
if __name__ == "__main__":
|
results.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|