Upload from GitHub Actions: Add auto-translated datasets
Browse files- .DS_Store +0 -0
- .github/workflows/nightly-evals.yml +0 -4
- .gitignore +0 -2
- Dockerfile +1 -1
- README.md +0 -5
- datasets.json +6 -6
- evals/__init__.py +1 -0
- evals/backend.py +22 -139
- evals/countries.py +4 -10
- evals/datasets_/arc.py +27 -44
- evals/datasets_/fleurs.py +1 -2
- evals/datasets_/mgsm.py +23 -47
- evals/datasets_/mmlu.py +25 -57
- evals/datasets_/truthfulqa.py +28 -66
- evals/datasets_/util.py +0 -8
- evals/download_data.py +16 -33
- evals/languages.py +0 -3
- evals/main.py +48 -176
- evals/models.py +36 -126
- evals/plots.py +41 -75
- evals/tasks.py +142 -130
- evals/translate.py +1 -1
- frontend/package-lock.json +0 -0
- frontend/package.json +5 -7
- frontend/src/App.js +77 -183
- frontend/src/components/HistoryPlot.js +2 -2
- frontend/src/components/LanguageTable.js +1 -1
- frontend/src/components/ModelTable.js +17 -31
- frontend/src/components/ScoreColumns.js +10 -23
- frontend/src/components/ScoreField.js +1 -2
- frontend/src/components/SpeakerPlot.js +2 -2
- frontend/src/components/WorldMap.js +7 -22
- languages.json +49 -49
- models.json +216 -362
- pyproject.toml +0 -3
- uv.lock +0 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.github/workflows/nightly-evals.yml
CHANGED
@@ -8,8 +8,6 @@ on:
|
|
8 |
jobs:
|
9 |
run-evals:
|
10 |
runs-on: ubuntu-latest
|
11 |
-
# checking if this is working in case eval runs take longer than 6h github actions allowance
|
12 |
-
timeout-minutes: 1440 # 24 hours timeout
|
13 |
steps:
|
14 |
- uses: actions/checkout@v3
|
15 |
|
@@ -27,8 +25,6 @@ jobs:
|
|
27 |
env:
|
28 |
OPENROUTER_API_KEY: ${{ secrets.OPENROUTER_API_KEY }}
|
29 |
HUGGINGFACE_ACCESS_TOKEN: ${{ secrets.HUGGINGFACE_ACCESS_TOKEN }}
|
30 |
-
N_SENTENCES: 20
|
31 |
-
MAX_LANGUAGES: 150
|
32 |
run: |
|
33 |
uv run huggingface-cli login --token ${{ secrets.HUGGINGFACE_ACCESS_TOKEN }}
|
34 |
uv run evals/download_data.py
|
|
|
8 |
jobs:
|
9 |
run-evals:
|
10 |
runs-on: ubuntu-latest
|
|
|
|
|
11 |
steps:
|
12 |
- uses: actions/checkout@v3
|
13 |
|
|
|
25 |
env:
|
26 |
OPENROUTER_API_KEY: ${{ secrets.OPENROUTER_API_KEY }}
|
27 |
HUGGINGFACE_ACCESS_TOKEN: ${{ secrets.HUGGINGFACE_ACCESS_TOKEN }}
|
|
|
|
|
28 |
run: |
|
29 |
uv run huggingface-cli login --token ${{ secrets.HUGGINGFACE_ACCESS_TOKEN }}
|
30 |
uv run evals/download_data.py
|
.gitignore
CHANGED
@@ -20,5 +20,3 @@ wheels/
|
|
20 |
# folders and files to be ignored
|
21 |
.specstory/
|
22 |
.cursorindexingignore
|
23 |
-
|
24 |
-
|
|
|
20 |
# folders and files to be ignored
|
21 |
.specstory/
|
22 |
.cursorindexingignore
|
|
|
|
Dockerfile
CHANGED
@@ -14,7 +14,7 @@ ENV HOME=/home/user \
|
|
14 |
RUN mkdir -p ${UV_CACHE_DIR} && chown -R user:user ${HOME}
|
15 |
USER user
|
16 |
WORKDIR $HOME/app
|
17 |
-
COPY --chown=user pyproject.toml uv.lock
|
18 |
RUN uv sync --frozen --no-dev
|
19 |
COPY --chown=user evals/ evals/
|
20 |
COPY --chown=user --from=build /frontend/build /home/user/app/frontend/build
|
|
|
14 |
RUN mkdir -p ${UV_CACHE_DIR} && chown -R user:user ${HOME}
|
15 |
USER user
|
16 |
WORKDIR $HOME/app
|
17 |
+
COPY --chown=user pyproject.toml uv.lock ./
|
18 |
RUN uv sync --frozen --no-dev
|
19 |
COPY --chown=user evals/ evals/
|
20 |
COPY --chown=user --from=build /frontend/build /home/user/app/frontend/build
|
README.md
CHANGED
@@ -45,7 +45,6 @@ _Tracking language proficiency of AI models for every language_
|
|
45 |
|
46 |
## Evaluate
|
47 |
|
48 |
-
### Local Development
|
49 |
```bash
|
50 |
uv run --extra dev evals/main.py
|
51 |
```
|
@@ -56,7 +55,3 @@ uv run --extra dev evals/main.py
|
|
56 |
uv run evals/backend.py
|
57 |
cd frontend && npm i && npm start
|
58 |
```
|
59 |
-
|
60 |
-
## System Architecture
|
61 |
-
|
62 |
-
See [system_architecture_diagram.md](system_architecture_diagram.md) for the complete system architecture diagram and component descriptions.
|
|
|
45 |
|
46 |
## Evaluate
|
47 |
|
|
|
48 |
```bash
|
49 |
uv run --extra dev evals/main.py
|
50 |
```
|
|
|
55 |
uv run evals/backend.py
|
56 |
cd frontend && npm i && npm start
|
57 |
```
|
|
|
|
|
|
|
|
datasets.json
CHANGED
@@ -219,7 +219,7 @@
|
|
219 |
"parallel": true,
|
220 |
"translation": "machine",
|
221 |
"base": "MMLU",
|
222 |
-
"implemented":
|
223 |
"group": "Multitask Language Understanding"
|
224 |
},
|
225 |
{
|
@@ -256,7 +256,7 @@
|
|
256 |
"parallel": true,
|
257 |
"translation": "machine",
|
258 |
"base": "MMLU",
|
259 |
-
"implemented":
|
260 |
"group": "Multitask Language Understanding"
|
261 |
},
|
262 |
{
|
@@ -360,7 +360,7 @@
|
|
360 |
"parallel": true,
|
361 |
"translation": "machine",
|
362 |
"base": "AI2 ARC",
|
363 |
-
"implemented":
|
364 |
"group": "ARC Question Answering"
|
365 |
},
|
366 |
{
|
@@ -375,7 +375,7 @@
|
|
375 |
"parallel": true,
|
376 |
"translation": "machine",
|
377 |
"base": "AI2 ARC",
|
378 |
-
"implemented":
|
379 |
"group": "ARC Question Answering"
|
380 |
},
|
381 |
{
|
@@ -420,7 +420,7 @@
|
|
420 |
"parallel": true,
|
421 |
"translation": "machine",
|
422 |
"base": "TruthfulQA",
|
423 |
-
"implemented":
|
424 |
"group": "Truthfulness"
|
425 |
},
|
426 |
{
|
@@ -435,7 +435,7 @@
|
|
435 |
"parallel": true,
|
436 |
"translation": "machine",
|
437 |
"base": "TruthfulQA",
|
438 |
-
"implemented":
|
439 |
"group": "Truthfulness"
|
440 |
},
|
441 |
{
|
|
|
219 |
"parallel": true,
|
220 |
"translation": "machine",
|
221 |
"base": "MMLU",
|
222 |
+
"implemented": true,
|
223 |
"group": "Multitask Language Understanding"
|
224 |
},
|
225 |
{
|
|
|
256 |
"parallel": true,
|
257 |
"translation": "machine",
|
258 |
"base": "MMLU",
|
259 |
+
"implemented": true,
|
260 |
"group": "Multitask Language Understanding"
|
261 |
},
|
262 |
{
|
|
|
360 |
"parallel": true,
|
361 |
"translation": "machine",
|
362 |
"base": "AI2 ARC",
|
363 |
+
"implemented": true,
|
364 |
"group": "ARC Question Answering"
|
365 |
},
|
366 |
{
|
|
|
375 |
"parallel": true,
|
376 |
"translation": "machine",
|
377 |
"base": "AI2 ARC",
|
378 |
+
"implemented": true,
|
379 |
"group": "ARC Question Answering"
|
380 |
},
|
381 |
{
|
|
|
420 |
"parallel": true,
|
421 |
"translation": "machine",
|
422 |
"base": "TruthfulQA",
|
423 |
+
"implemented": true,
|
424 |
"group": "Truthfulness"
|
425 |
},
|
426 |
{
|
|
|
435 |
"parallel": true,
|
436 |
"translation": "machine",
|
437 |
"base": "TruthfulQA",
|
438 |
+
"implemented": true,
|
439 |
"group": "Truthfulness"
|
440 |
},
|
441 |
{
|
evals/__init__.py
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
evals/backend.py
CHANGED
@@ -4,8 +4,7 @@ import os
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import uvicorn
|
7 |
-
|
8 |
-
from evals.countries import make_country_table
|
9 |
from fastapi import FastAPI, Request
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from fastapi.middleware.gzip import GZipMiddleware
|
@@ -27,7 +26,7 @@ task_metrics = [
|
|
27 |
"classification_accuracy",
|
28 |
"mmlu_accuracy",
|
29 |
"arc_accuracy",
|
30 |
-
"truthfulqa_accuracy",
|
31 |
"mgsm_accuracy",
|
32 |
]
|
33 |
|
@@ -40,77 +39,28 @@ def compute_normalized_average(df, metrics):
|
|
40 |
col_min = normalized_df[col].min()
|
41 |
col_max = normalized_df[col].max()
|
42 |
if col_max > col_min: # Avoid division by zero
|
43 |
-
normalized_df[col] = (normalized_df[col] - col_min) / (
|
44 |
-
col_max - col_min
|
45 |
-
)
|
46 |
else:
|
47 |
normalized_df[col] = 0 # If all values are the same, set to 0
|
48 |
return normalized_df.mean(axis=1, skipna=False)
|
49 |
|
50 |
|
51 |
-
def make_model_table(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Pivot to get scores for each origin-specific metric
|
58 |
-
scores_pivot = scores_df.pivot_table(
|
59 |
-
index="model",
|
60 |
-
columns="task_metric_origin",
|
61 |
-
values="score",
|
62 |
-
aggfunc="mean",
|
63 |
-
)
|
64 |
-
|
65 |
-
# Create the regular task_metric for the main average calculation
|
66 |
-
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
|
67 |
-
main_pivot = scores_df.pivot_table(
|
68 |
-
index="model", columns="task_metric", values="score", aggfunc="mean"
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
-
df =
|
73 |
-
|
74 |
for metric in task_metrics:
|
75 |
if metric not in df.columns:
|
76 |
df[metric] = np.nan
|
77 |
-
|
78 |
df["average"] = compute_normalized_average(df, task_metrics)
|
79 |
-
|
80 |
-
# Compute origin presence per model+metric
|
81 |
-
origin_presence = (
|
82 |
-
scores_df.groupby(["model", "task_metric", "origin"])
|
83 |
-
.size()
|
84 |
-
.unstack(fill_value=0)
|
85 |
-
)
|
86 |
-
# Add boolean flags: show asterisk only if exclusively machine-origin contributed
|
87 |
-
for metric in task_metrics:
|
88 |
-
human_col_name = "human" if "human" in origin_presence.columns else None
|
89 |
-
machine_col_name = "machine" if "machine" in origin_presence.columns else None
|
90 |
-
if human_col_name or machine_col_name:
|
91 |
-
flags = []
|
92 |
-
for model in df.index:
|
93 |
-
try:
|
94 |
-
counts = origin_presence.loc[(model, metric)]
|
95 |
-
except KeyError:
|
96 |
-
flags.append(False)
|
97 |
-
continue
|
98 |
-
human_count = counts.get(human_col_name, 0) if human_col_name else 0
|
99 |
-
machine_count = (
|
100 |
-
counts.get(machine_col_name, 0) if machine_col_name else 0
|
101 |
-
)
|
102 |
-
flags.append(machine_count > 0 and human_count == 0)
|
103 |
-
df[f"{metric}_is_machine"] = flags
|
104 |
-
else:
|
105 |
-
df[f"{metric}_is_machine"] = False
|
106 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
107 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
108 |
df["rank"] = df.index + 1
|
109 |
-
|
110 |
-
# Dynamically find all metric columns to include
|
111 |
-
final_cols = df.columns
|
112 |
-
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
|
113 |
-
|
114 |
df = df[
|
115 |
[
|
116 |
"rank",
|
@@ -124,81 +74,27 @@ def make_model_table(scores_df, models):
|
|
124 |
"license",
|
125 |
"cost",
|
126 |
"average",
|
127 |
-
*
|
128 |
]
|
129 |
]
|
130 |
return df
|
131 |
|
132 |
|
133 |
-
def make_language_table(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
# Pivot to get scores for each origin-specific metric
|
140 |
-
scores_pivot = scores_df.pivot_table(
|
141 |
-
index="bcp_47",
|
142 |
-
columns="task_metric_origin",
|
143 |
-
values="score",
|
144 |
-
aggfunc="mean",
|
145 |
-
)
|
146 |
-
|
147 |
-
# Create the regular task_metric for the main average calculation
|
148 |
-
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
|
149 |
-
main_pivot = scores_df.pivot_table(
|
150 |
-
index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
|
151 |
)
|
152 |
-
|
153 |
-
|
154 |
-
df =
|
155 |
-
|
156 |
for metric in task_metrics:
|
157 |
if metric not in df.columns:
|
158 |
df[metric] = np.nan
|
159 |
-
|
160 |
df["average"] = compute_normalized_average(df, task_metrics)
|
161 |
-
|
162 |
-
# Compute origin presence per language+metric; show asterisk only if exclusively machine-origin
|
163 |
-
origin_presence = (
|
164 |
-
scores_df.groupby(["bcp_47", "task_metric", "origin"])
|
165 |
-
.size()
|
166 |
-
.unstack(fill_value=0)
|
167 |
-
)
|
168 |
-
for metric in task_metrics:
|
169 |
-
human_col_name = "human" if "human" in origin_presence.columns else None
|
170 |
-
machine_col_name = "machine" if "machine" in origin_presence.columns else None
|
171 |
-
if human_col_name or machine_col_name:
|
172 |
-
flags = []
|
173 |
-
for bcp in df.index:
|
174 |
-
try:
|
175 |
-
counts = origin_presence.loc[(bcp, metric)]
|
176 |
-
except KeyError:
|
177 |
-
flags.append(False)
|
178 |
-
continue
|
179 |
-
human_count = counts.get(human_col_name, 0) if human_col_name else 0
|
180 |
-
machine_count = (
|
181 |
-
counts.get(machine_col_name, 0) if machine_col_name else 0
|
182 |
-
)
|
183 |
-
flags.append(machine_count > 0 and human_count == 0)
|
184 |
-
df[f"{metric}_is_machine"] = flags
|
185 |
-
else:
|
186 |
-
df[f"{metric}_is_machine"] = False
|
187 |
-
|
188 |
-
# Per-row machine-origin flags for each metric (true if any machine-origin score exists for the language)
|
189 |
-
for metric in task_metrics:
|
190 |
-
machine_col = f"{metric}_machine"
|
191 |
-
if machine_col in df.columns:
|
192 |
-
df[f"{metric}_is_machine"] = df[machine_col].notna()
|
193 |
-
else:
|
194 |
-
df[f"{metric}_is_machine"] = False
|
195 |
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
196 |
df = df.sort_values(by="speakers", ascending=False)
|
197 |
-
|
198 |
-
# Dynamically find all metric columns to include
|
199 |
-
final_cols = df.columns
|
200 |
-
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
|
201 |
-
|
202 |
df = df[
|
203 |
[
|
204 |
"bcp_47",
|
@@ -208,7 +104,7 @@ def make_language_table(scores_df, languages):
|
|
208 |
"family",
|
209 |
"average",
|
210 |
"in_benchmark",
|
211 |
-
*
|
212 |
]
|
213 |
]
|
214 |
return df
|
@@ -229,22 +125,10 @@ async def data(request: Request):
|
|
229 |
body = await request.body()
|
230 |
data = json.loads(body)
|
231 |
selected_languages = data.get("selectedLanguages", {})
|
232 |
-
df = (
|
233 |
-
scores.groupby(["model", "bcp_47", "task", "metric", "origin"])
|
234 |
-
.mean()
|
235 |
-
.reset_index()
|
236 |
-
)
|
237 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
238 |
language_table = make_language_table(df, languages)
|
239 |
datasets_df = pd.read_json("datasets.json")
|
240 |
-
|
241 |
-
# Identify which metrics have machine translations available
|
242 |
-
machine_translated_metrics = set()
|
243 |
-
for _, row in df.iterrows():
|
244 |
-
if row["origin"] == "machine":
|
245 |
-
metric_name = f"{row['task']}_{row['metric']}"
|
246 |
-
machine_translated_metrics.add(metric_name)
|
247 |
-
|
248 |
if selected_languages:
|
249 |
# the filtering is only applied for the model table and the country data
|
250 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
@@ -259,7 +143,6 @@ async def data(request: Request):
|
|
259 |
"language_table": serialize(language_table),
|
260 |
"dataset_table": serialize(datasets_df),
|
261 |
"countries": serialize(countries),
|
262 |
-
"machine_translated_metrics": list(machine_translated_metrics),
|
263 |
}
|
264 |
return JSONResponse(content=all_tables)
|
265 |
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import uvicorn
|
7 |
+
from countries import make_country_table
|
|
|
8 |
from fastapi import FastAPI, Request
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.middleware.gzip import GZipMiddleware
|
|
|
26 |
"classification_accuracy",
|
27 |
"mmlu_accuracy",
|
28 |
"arc_accuracy",
|
29 |
+
# "truthfulqa_accuracy",
|
30 |
"mgsm_accuracy",
|
31 |
]
|
32 |
|
|
|
39 |
col_min = normalized_df[col].min()
|
40 |
col_max = normalized_df[col].max()
|
41 |
if col_max > col_min: # Avoid division by zero
|
42 |
+
normalized_df[col] = (normalized_df[col] - col_min) / (col_max - col_min)
|
|
|
|
|
43 |
else:
|
44 |
normalized_df[col] = 0 # If all values are the same, set to 0
|
45 |
return normalized_df.mean(axis=1, skipna=False)
|
46 |
|
47 |
|
48 |
+
def make_model_table(df, models):
|
49 |
+
df = (
|
50 |
+
df.groupby(["model", "task", "metric"])
|
51 |
+
.agg({"score": "mean", "bcp_47": "nunique"})
|
52 |
+
.reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
55 |
+
df = df.drop(columns=["task", "metric"])
|
56 |
+
df = df.pivot(index="model", columns="task_metric", values="score")
|
|
|
57 |
for metric in task_metrics:
|
58 |
if metric not in df.columns:
|
59 |
df[metric] = np.nan
|
|
|
60 |
df["average"] = compute_normalized_average(df, task_metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
62 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
63 |
df["rank"] = df.index + 1
|
|
|
|
|
|
|
|
|
|
|
64 |
df = df[
|
65 |
[
|
66 |
"rank",
|
|
|
74 |
"license",
|
75 |
"cost",
|
76 |
"average",
|
77 |
+
*task_metrics,
|
78 |
]
|
79 |
]
|
80 |
return df
|
81 |
|
82 |
|
83 |
+
def make_language_table(df, languages):
|
84 |
+
df = (
|
85 |
+
df.groupby(["bcp_47", "task", "metric"])
|
86 |
+
.agg({"score": "mean", "model": "nunique"})
|
87 |
+
.reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
90 |
+
df = df.drop(columns=["task", "metric"])
|
91 |
+
df = df.pivot(index="bcp_47", columns="task_metric", values="score").reset_index()
|
|
|
92 |
for metric in task_metrics:
|
93 |
if metric not in df.columns:
|
94 |
df[metric] = np.nan
|
|
|
95 |
df["average"] = compute_normalized_average(df, task_metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
97 |
df = df.sort_values(by="speakers", ascending=False)
|
|
|
|
|
|
|
|
|
|
|
98 |
df = df[
|
99 |
[
|
100 |
"bcp_47",
|
|
|
104 |
"family",
|
105 |
"average",
|
106 |
"in_benchmark",
|
107 |
+
*task_metrics,
|
108 |
]
|
109 |
]
|
110 |
return df
|
|
|
125 |
body = await request.body()
|
126 |
data = json.loads(body)
|
127 |
selected_languages = data.get("selectedLanguages", {})
|
128 |
+
df = scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
|
|
|
|
|
|
|
|
129 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
130 |
language_table = make_language_table(df, languages)
|
131 |
datasets_df = pd.read_json("datasets.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if selected_languages:
|
133 |
# the filtering is only applied for the model table and the country data
|
134 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
|
|
143 |
"language_table": serialize(language_table),
|
144 |
"dataset_table": serialize(datasets_df),
|
145 |
"countries": serialize(countries),
|
|
|
146 |
}
|
147 |
return JSONResponse(content=all_tables)
|
148 |
|
evals/countries.py
CHANGED
@@ -15,7 +15,6 @@ def population(bcp_47):
|
|
15 |
}
|
16 |
return items
|
17 |
|
18 |
-
|
19 |
@cache
|
20 |
def make_country_table(language_table):
|
21 |
countries = defaultdict(list)
|
@@ -31,15 +30,10 @@ def make_country_table(language_table):
|
|
31 |
)
|
32 |
for country, languages in countries.items():
|
33 |
speaker_pop = sum(entry["population"] for entry in languages)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
score = (
|
39 |
-
sum(entry["score"] * entry["population"] for entry in languages)
|
40 |
-
/ speaker_pop
|
41 |
-
)
|
42 |
-
|
43 |
countries[country] = {
|
44 |
"score": score,
|
45 |
"languages": languages,
|
|
|
15 |
}
|
16 |
return items
|
17 |
|
|
|
18 |
@cache
|
19 |
def make_country_table(language_table):
|
20 |
countries = defaultdict(list)
|
|
|
30 |
)
|
31 |
for country, languages in countries.items():
|
32 |
speaker_pop = sum(entry["population"] for entry in languages)
|
33 |
+
score = (
|
34 |
+
sum(entry["score"] * entry["population"] for entry in languages)
|
35 |
+
/ speaker_pop
|
36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
37 |
countries[country] = {
|
38 |
"score": score,
|
39 |
"languages": languages,
|
evals/datasets_/arc.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import random
|
|
|
2 |
|
3 |
-
from langcodes import standardize_tag
|
4 |
from rich import print
|
5 |
-
from models import translate_google,
|
6 |
from tqdm import tqdm
|
7 |
-
from datasets import
|
8 |
import asyncio
|
9 |
from tqdm.asyncio import tqdm_asyncio
|
10 |
import os
|
@@ -13,33 +14,27 @@ from datasets_.util import _get_dataset_config_names, _load_dataset
|
|
13 |
|
14 |
slug_uhura_arc_easy = "masakhane/uhura-arc-easy"
|
15 |
tags_uhura_arc_easy = {
|
16 |
-
standardize_tag(a.split("_")[0], macro=True): a
|
17 |
-
for a in _get_dataset_config_names(slug_uhura_arc_easy)
|
18 |
if not a.endswith("unmatched")
|
19 |
}
|
20 |
|
21 |
|
22 |
random.seed(42)
|
23 |
-
id_sets_train = [
|
24 |
-
set(_load_dataset(slug_uhura_arc_easy, tag, split="train")["id"])
|
25 |
-
for tag in tags_uhura_arc_easy.values()
|
26 |
-
]
|
27 |
common_ids_train = list(sorted(set.intersection(*id_sets_train)))
|
28 |
random.shuffle(common_ids_train)
|
29 |
-
id_sets_test = [
|
30 |
-
set(_load_dataset(slug_uhura_arc_easy, tag, split="test")["id"])
|
31 |
-
for tag in tags_uhura_arc_easy.values()
|
32 |
-
]
|
33 |
common_ids_test = list(sorted(set.intersection(*id_sets_test)))
|
34 |
random.shuffle(common_ids_test)
|
35 |
|
36 |
slug_uhura_arc_easy_translated = "fair-forward/arc-easy-autotranslated"
|
37 |
tags_uhura_arc_easy_translated = {
|
38 |
-
standardize_tag(a.split("_")[0], macro=True): a
|
39 |
-
for a in _get_dataset_config_names(slug_uhura_arc_easy_translated)
|
40 |
}
|
41 |
|
42 |
|
|
|
|
|
43 |
def add_choices(row):
|
44 |
row["choices"] = row["choices"]["text"]
|
45 |
return row
|
@@ -50,40 +45,37 @@ def load_uhura_arc_easy(language_bcp_47, nr):
|
|
50 |
ds = _load_dataset(slug_uhura_arc_easy, tags_uhura_arc_easy[language_bcp_47])
|
51 |
ds = ds.map(add_choices)
|
52 |
ds = ds.rename_column("answerKey", "answer")
|
|
|
|
|
53 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
54 |
-
return "masakhane/uhura-arc-easy",
|
55 |
if language_bcp_47 in tags_uhura_arc_easy_translated.keys():
|
56 |
-
ds = _load_dataset(
|
57 |
-
slug_uhura_arc_easy_translated,
|
58 |
-
tags_uhura_arc_easy_translated[language_bcp_47],
|
59 |
-
)
|
60 |
ds = ds.rename_column("answerKey", "answer")
|
|
|
|
|
|
|
61 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
62 |
-
return "fair-forward/arc-easy-autotranslated",
|
63 |
else:
|
64 |
return None, None, None
|
65 |
|
66 |
-
|
67 |
def translate_arc(languages):
|
68 |
human_translated = tags_uhura_arc_easy.keys()
|
69 |
untranslated = [
|
70 |
lang
|
71 |
for lang in languages["bcp_47"].values[:100]
|
72 |
-
if lang not in human_translated and lang in
|
73 |
]
|
74 |
n_samples = 10
|
75 |
-
train_ids = common_ids_train[:
|
76 |
-
en_train = _load_dataset(
|
77 |
-
slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="train"
|
78 |
-
)
|
79 |
en_train = en_train.filter(lambda x: x["id"] in train_ids)
|
80 |
test_ids = common_ids_test[:n_samples]
|
81 |
-
en_test = _load_dataset(
|
82 |
-
slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="test"
|
83 |
-
)
|
84 |
en_test = en_test.filter(lambda x: x["id"] in test_ids)
|
85 |
data = {"train": en_train, "test": en_test}
|
86 |
-
|
87 |
slug = "fair-forward/arc-easy-autotranslated"
|
88 |
for lang in tqdm(untranslated):
|
89 |
# check if already exists on hub
|
@@ -92,22 +84,16 @@ def translate_arc(languages):
|
|
92 |
except (ValueError, Exception):
|
93 |
print(f"Translating {lang}...")
|
94 |
for split, data_en in data.items():
|
95 |
-
questions_tr = [
|
96 |
-
translate_google(q, "en", lang) for q in data_en["question"]
|
97 |
-
]
|
98 |
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
|
99 |
choices_texts_concatenated = []
|
100 |
for choice in data_en["choices"]:
|
101 |
for option in choice["text"]:
|
102 |
choices_texts_concatenated.append(option)
|
103 |
-
choices_tr = [
|
104 |
-
translate_google(c, "en", lang) for c in choices_texts_concatenated
|
105 |
-
]
|
106 |
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
|
107 |
# group into chunks of 4
|
108 |
-
choices_tr = [
|
109 |
-
choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4)
|
110 |
-
]
|
111 |
|
112 |
ds_lang = Dataset.from_dict(
|
113 |
{
|
@@ -124,8 +110,5 @@ def translate_arc(languages):
|
|
124 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
125 |
)
|
126 |
ds_lang.to_json(
|
127 |
-
f"data/translations/arc/{lang}_{split}.json",
|
128 |
-
lines=False,
|
129 |
-
force_ascii=False,
|
130 |
-
indent=2,
|
131 |
)
|
|
|
1 |
import random
|
2 |
+
from collections import Counter, defaultdict
|
3 |
|
4 |
+
from langcodes import Language, standardize_tag
|
5 |
from rich import print
|
6 |
+
from models import translate_google, google_supported_languages
|
7 |
from tqdm import tqdm
|
8 |
+
from datasets import Dataset, load_dataset
|
9 |
import asyncio
|
10 |
from tqdm.asyncio import tqdm_asyncio
|
11 |
import os
|
|
|
14 |
|
15 |
slug_uhura_arc_easy = "masakhane/uhura-arc-easy"
|
16 |
tags_uhura_arc_easy = {
|
17 |
+
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_arc_easy)
|
|
|
18 |
if not a.endswith("unmatched")
|
19 |
}
|
20 |
|
21 |
|
22 |
random.seed(42)
|
23 |
+
id_sets_train = [set(_load_dataset(slug_uhura_arc_easy, tag, split="train")["id"]) for tag in tags_uhura_arc_easy.values()]
|
|
|
|
|
|
|
24 |
common_ids_train = list(sorted(set.intersection(*id_sets_train)))
|
25 |
random.shuffle(common_ids_train)
|
26 |
+
id_sets_test = [set(_load_dataset(slug_uhura_arc_easy, tag, split="test")["id"]) for tag in tags_uhura_arc_easy.values()]
|
|
|
|
|
|
|
27 |
common_ids_test = list(sorted(set.intersection(*id_sets_test)))
|
28 |
random.shuffle(common_ids_test)
|
29 |
|
30 |
slug_uhura_arc_easy_translated = "fair-forward/arc-easy-autotranslated"
|
31 |
tags_uhura_arc_easy_translated = {
|
32 |
+
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_arc_easy_translated)
|
|
|
33 |
}
|
34 |
|
35 |
|
36 |
+
|
37 |
+
|
38 |
def add_choices(row):
|
39 |
row["choices"] = row["choices"]["text"]
|
40 |
return row
|
|
|
45 |
ds = _load_dataset(slug_uhura_arc_easy, tags_uhura_arc_easy[language_bcp_47])
|
46 |
ds = ds.map(add_choices)
|
47 |
ds = ds.rename_column("answerKey", "answer")
|
48 |
+
train_ids = common_ids_train[nr:nr+3]
|
49 |
+
examples = ds["train"].filter(lambda x: x["id"] in train_ids)
|
50 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
51 |
+
return "masakhane/uhura-arc-easy", examples, task
|
52 |
if language_bcp_47 in tags_uhura_arc_easy_translated.keys():
|
53 |
+
ds = _load_dataset(slug_uhura_arc_easy_translated, tags_uhura_arc_easy_translated[language_bcp_47])
|
|
|
|
|
|
|
54 |
ds = ds.rename_column("answerKey", "answer")
|
55 |
+
train_ids = common_ids_train[nr:nr+3]
|
56 |
+
examples = ds["train"].filter(lambda x: x["id"] in train_ids)
|
57 |
+
# raise Exception(language_bcp_47)
|
58 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
59 |
+
return "fair-forward/arc-easy-autotranslated", examples, task
|
60 |
else:
|
61 |
return None, None, None
|
62 |
|
|
|
63 |
def translate_arc(languages):
|
64 |
human_translated = tags_uhura_arc_easy.keys()
|
65 |
untranslated = [
|
66 |
lang
|
67 |
for lang in languages["bcp_47"].values[:100]
|
68 |
+
if lang not in human_translated and lang in google_supported_languages
|
69 |
]
|
70 |
n_samples = 10
|
71 |
+
train_ids = common_ids_train[:n_samples+3]
|
72 |
+
en_train = _load_dataset(slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="train")
|
|
|
|
|
73 |
en_train = en_train.filter(lambda x: x["id"] in train_ids)
|
74 |
test_ids = common_ids_test[:n_samples]
|
75 |
+
en_test = _load_dataset(slug_uhura_arc_easy, subset=tags_uhura_arc_easy["en"], split="test")
|
|
|
|
|
76 |
en_test = en_test.filter(lambda x: x["id"] in test_ids)
|
77 |
data = {"train": en_train, "test": en_test}
|
78 |
+
|
79 |
slug = "fair-forward/arc-easy-autotranslated"
|
80 |
for lang in tqdm(untranslated):
|
81 |
# check if already exists on hub
|
|
|
84 |
except (ValueError, Exception):
|
85 |
print(f"Translating {lang}...")
|
86 |
for split, data_en in data.items():
|
87 |
+
questions_tr = [translate_google(q, "en", lang) for q in data_en["question"]]
|
|
|
|
|
88 |
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
|
89 |
choices_texts_concatenated = []
|
90 |
for choice in data_en["choices"]:
|
91 |
for option in choice["text"]:
|
92 |
choices_texts_concatenated.append(option)
|
93 |
+
choices_tr = [translate_google(c, "en", lang) for c in choices_texts_concatenated]
|
|
|
|
|
94 |
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
|
95 |
# group into chunks of 4
|
96 |
+
choices_tr = [choices_tr[i:i+4] for i in range(0, len(choices_tr), 4)]
|
|
|
|
|
97 |
|
98 |
ds_lang = Dataset.from_dict(
|
99 |
{
|
|
|
110 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
111 |
)
|
112 |
ds_lang.to_json(
|
113 |
+
f"data/translations/arc/{lang}_{split}.json", lines=False, force_ascii=False, indent=2
|
|
|
|
|
|
|
114 |
)
|
evals/datasets_/fleurs.py
CHANGED
@@ -11,7 +11,6 @@ fleurs["bcp_47"] = fleurs["fleurs_tag"].apply(
|
|
11 |
lambda x: standardize_tag(x.rsplit("_")[0], macro=True)
|
12 |
)
|
13 |
|
14 |
-
|
15 |
def download_file(url, path):
|
16 |
response = requests.get(url)
|
17 |
with open(path, "wb") as f:
|
@@ -35,4 +34,4 @@ def download_fleurs(transcription_langs_eval):
|
|
35 |
if not tsv_path.exists():
|
36 |
print(f"Downloading {tsv_url} to {tsv_path}")
|
37 |
tsv_path.parent.mkdir(parents=True, exist_ok=True)
|
38 |
-
download_file(tsv_url, tsv_path)
|
|
|
11 |
lambda x: standardize_tag(x.rsplit("_")[0], macro=True)
|
12 |
)
|
13 |
|
|
|
14 |
def download_file(url, path):
|
15 |
response = requests.get(url)
|
16 |
with open(path, "wb") as f:
|
|
|
34 |
if not tsv_path.exists():
|
35 |
print(f"Downloading {tsv_url} to {tsv_path}")
|
36 |
tsv_path.parent.mkdir(parents=True, exist_ok=True)
|
37 |
+
download_file(tsv_url, tsv_path)
|
evals/datasets_/mgsm.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
import asyncio
|
2 |
import os
|
3 |
-
import random
|
4 |
|
5 |
from datasets import Dataset, load_dataset
|
6 |
-
from datasets_.util import _get_dataset_config_names, _load_dataset
|
7 |
-
from langcodes import
|
8 |
-
from models import
|
9 |
-
from rich import print
|
10 |
from tqdm import tqdm
|
11 |
from tqdm.asyncio import tqdm_asyncio
|
12 |
|
@@ -39,50 +37,31 @@ def parse_number(i):
|
|
39 |
return None
|
40 |
|
41 |
|
42 |
-
@cache
|
43 |
-
def _get_mgsm_item(dataset_slug, subset_tag, nr, trust_remote_code=False):
|
44 |
-
"""Cache individual MGSM items efficiently"""
|
45 |
-
try:
|
46 |
-
ds = _load_dataset(
|
47 |
-
dataset_slug,
|
48 |
-
subset=subset_tag,
|
49 |
-
split="test",
|
50 |
-
trust_remote_code=trust_remote_code,
|
51 |
-
)
|
52 |
-
if nr >= len(ds):
|
53 |
-
return None
|
54 |
-
|
55 |
-
row = ds[nr]
|
56 |
-
|
57 |
-
# Post-process based on dataset type
|
58 |
-
if dataset_slug == slug_gsm8kx:
|
59 |
-
row["answer_number"] = row["answer"].split("####")[1].strip()
|
60 |
-
|
61 |
-
return row
|
62 |
-
except Exception:
|
63 |
-
# Dataset doesn't exist or doesn't have test split
|
64 |
-
return None
|
65 |
-
|
66 |
-
|
67 |
def load_mgsm(language_bcp_47, nr):
|
68 |
if language_bcp_47 in tags_mgsm.keys():
|
69 |
-
|
70 |
-
return slug_mgsm,
|
71 |
elif language_bcp_47 in tags_afrimgsm.keys():
|
72 |
-
|
73 |
-
|
74 |
-
elif language_bcp_47 in tags_gsm8kx.keys():
|
75 |
-
item = _get_mgsm_item(
|
76 |
-
slug_gsm8kx, tags_gsm8kx[language_bcp_47], nr, trust_remote_code=True
|
77 |
)
|
78 |
-
return
|
79 |
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
80 |
-
|
81 |
-
slug_gsm_autotranslated, tags_gsm_autotranslated[language_bcp_47],
|
82 |
)
|
83 |
-
return slug_gsm_autotranslated,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
else:
|
85 |
-
return None, None
|
86 |
|
87 |
|
88 |
def translate_mgsm(languages):
|
@@ -90,7 +69,7 @@ def translate_mgsm(languages):
|
|
90 |
untranslated = [
|
91 |
lang
|
92 |
for lang in languages["bcp_47"].values[:100]
|
93 |
-
if lang not in human_translated and lang in
|
94 |
]
|
95 |
en = _load_dataset(slug_mgsm, subset=tags_mgsm["en"], split="test")
|
96 |
slug = "fair-forward/gsm-autotranslated"
|
@@ -117,8 +96,5 @@ def translate_mgsm(languages):
|
|
117 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
118 |
)
|
119 |
ds_lang.to_json(
|
120 |
-
f"data/translations/mgsm/{lang}.json",
|
121 |
-
lines=False,
|
122 |
-
force_ascii=False,
|
123 |
-
indent=2,
|
124 |
)
|
|
|
1 |
import asyncio
|
2 |
import os
|
|
|
3 |
|
4 |
from datasets import Dataset, load_dataset
|
5 |
+
from datasets_.util import _get_dataset_config_names, _load_dataset
|
6 |
+
from langcodes import standardize_tag
|
7 |
+
from models import google_supported_languages, translate_google
|
|
|
8 |
from tqdm import tqdm
|
9 |
from tqdm.asyncio import tqdm_asyncio
|
10 |
|
|
|
37 |
return None
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def load_mgsm(language_bcp_47, nr):
|
41 |
if language_bcp_47 in tags_mgsm.keys():
|
42 |
+
ds = _load_dataset(slug_mgsm, subset=tags_mgsm[language_bcp_47], split="test")
|
43 |
+
return slug_mgsm, ds[nr]
|
44 |
elif language_bcp_47 in tags_afrimgsm.keys():
|
45 |
+
ds = _load_dataset(
|
46 |
+
slug_afrimgsm, subset=tags_afrimgsm[language_bcp_47], split="test"
|
|
|
|
|
|
|
47 |
)
|
48 |
+
return slug_afrimgsm, ds[nr]
|
49 |
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
50 |
+
ds = _load_dataset(
|
51 |
+
slug_gsm_autotranslated, subset=tags_gsm_autotranslated[language_bcp_47], split="test"
|
52 |
)
|
53 |
+
return slug_gsm_autotranslated, ds[nr]
|
54 |
+
elif language_bcp_47 in tags_gsm8kx.keys():
|
55 |
+
row = _load_dataset(
|
56 |
+
slug_gsm8kx,
|
57 |
+
subset=tags_gsm8kx[language_bcp_47],
|
58 |
+
split="test",
|
59 |
+
trust_remote_code=True,
|
60 |
+
)[nr]
|
61 |
+
row["answer_number"] = row["answer"].split("####")[1].strip()
|
62 |
+
return slug_gsm8kx, row
|
63 |
else:
|
64 |
+
return None, None
|
65 |
|
66 |
|
67 |
def translate_mgsm(languages):
|
|
|
69 |
untranslated = [
|
70 |
lang
|
71 |
for lang in languages["bcp_47"].values[:100]
|
72 |
+
if lang not in human_translated and lang in google_supported_languages
|
73 |
]
|
74 |
en = _load_dataset(slug_mgsm, subset=tags_mgsm["en"], split="test")
|
75 |
slug = "fair-forward/gsm-autotranslated"
|
|
|
96 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
97 |
)
|
98 |
ds_lang.to_json(
|
99 |
+
f"data/translations/mgsm/{lang}.json", lines=False, force_ascii=False, indent=2
|
|
|
|
|
|
|
100 |
)
|
evals/datasets_/mmlu.py
CHANGED
@@ -4,9 +4,9 @@ import random
|
|
4 |
from collections import Counter, defaultdict
|
5 |
|
6 |
from datasets import Dataset, load_dataset
|
7 |
-
from datasets_.util import _get_dataset_config_names, _load_dataset
|
8 |
from langcodes import Language, standardize_tag
|
9 |
-
from models import
|
10 |
from rich import print
|
11 |
from tqdm import tqdm
|
12 |
from tqdm.asyncio import tqdm_asyncio
|
@@ -111,7 +111,6 @@ def print_datasets_analysis():
|
|
111 |
# MMLUX is translated using DeepL
|
112 |
# Therefore, the priority is: AfriMMLU, Global-MMLU, MMLUX, Okapi-MMLU
|
113 |
|
114 |
-
|
115 |
# print_datasets_analysis()
|
116 |
|
117 |
|
@@ -144,61 +143,32 @@ tags_mmlux = set(
|
|
144 |
a.rsplit("_", 1)[1].split("-")[0].lower()
|
145 |
for a in _get_dataset_config_names("Eurolingua/mmlux", trust_remote_code=True)
|
146 |
)
|
147 |
-
tags_mmlu_autotranslated =
|
148 |
-
standardize_tag(a, macro=True): a
|
149 |
-
for a in _get_dataset_config_names("fair-forward/mmlu-autotranslated")
|
150 |
-
}
|
151 |
|
152 |
categories = sorted(
|
153 |
-
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
@cache
|
158 |
-
def _get_processed_mmlu_dataset(dataset_name, subset_tag):
|
159 |
-
"""Cache processed datasets to avoid reprocessing"""
|
160 |
-
ds = _load_dataset(dataset_name, subset_tag)
|
161 |
-
if dataset_name == "masakhane/afrimmlu":
|
162 |
-
ds = ds.map(parse_choices)
|
163 |
-
elif dataset_name == "CohereForAI/Global-MMLU":
|
164 |
-
ds = ds.map(add_choices)
|
165 |
-
return ds
|
166 |
-
|
167 |
-
|
168 |
-
@cache
|
169 |
-
def _get_mmlu_item(dataset_name, subset_tag, category, nr):
|
170 |
-
"""Cache individual MMLU items efficiently"""
|
171 |
-
ds = _get_processed_mmlu_dataset(dataset_name, subset_tag)
|
172 |
-
if dataset_name in ["masakhane/afrimmlu", "CohereForAI/Global-MMLU"]:
|
173 |
-
filtered = ds["test"].filter(lambda x: x["subject"] == category)
|
174 |
-
return filtered[nr] if nr < len(filtered) else None
|
175 |
-
else: # fair-forward/mmlu-autotranslated
|
176 |
-
filtered = ds["test"].filter(lambda x: x["subject"] == category)
|
177 |
-
return filtered[nr] if nr < len(filtered) else None
|
178 |
|
179 |
|
180 |
-
|
181 |
category = categories[nr % len(categories)]
|
182 |
if language_bcp_47 in tags_afrimmlu.keys():
|
183 |
-
|
184 |
-
|
185 |
-
)
|
186 |
-
|
|
|
187 |
elif language_bcp_47 in tags_global_mmlu.keys():
|
188 |
-
|
189 |
-
|
190 |
-
)
|
191 |
-
|
192 |
-
|
193 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
194 |
-
|
195 |
-
|
196 |
-
)
|
197 |
-
return
|
198 |
-
"fair-forward/mmlu-autotranslated",
|
199 |
-
task,
|
200 |
-
"machine" if task else (None, None, None),
|
201 |
-
)
|
202 |
else:
|
203 |
return None, None, None
|
204 |
|
@@ -207,10 +177,10 @@ def translate_mmlu(languages):
|
|
207 |
human_translated = [*tags_afrimmlu.keys(), *tags_global_mmlu.keys()]
|
208 |
untranslated = [
|
209 |
lang
|
210 |
-
for lang in languages["bcp_47"].values[:
|
211 |
-
if lang not in human_translated and lang in
|
212 |
]
|
213 |
-
n_samples =
|
214 |
|
215 |
slug = "fair-forward/mmlu-autotranslated"
|
216 |
for lang in tqdm(untranslated):
|
@@ -226,10 +196,8 @@ def translate_mmlu(languages):
|
|
226 |
if split == "dev":
|
227 |
samples.extend(ds.filter(lambda x: x["subject"] == category))
|
228 |
else:
|
229 |
-
|
230 |
-
|
231 |
-
for i in range(min(n_samples, len(filtered))):
|
232 |
-
task = filtered[i]
|
233 |
samples.append(task)
|
234 |
questions_tr = [
|
235 |
translate_google(s["question"], "en", lang) for s in samples
|
|
|
4 |
from collections import Counter, defaultdict
|
5 |
|
6 |
from datasets import Dataset, load_dataset
|
7 |
+
from datasets_.util import _get_dataset_config_names, _load_dataset
|
8 |
from langcodes import Language, standardize_tag
|
9 |
+
from models import google_supported_languages, translate_google
|
10 |
from rich import print
|
11 |
from tqdm import tqdm
|
12 |
from tqdm.asyncio import tqdm_asyncio
|
|
|
111 |
# MMLUX is translated using DeepL
|
112 |
# Therefore, the priority is: AfriMMLU, Global-MMLU, MMLUX, Okapi-MMLU
|
113 |
|
|
|
114 |
# print_datasets_analysis()
|
115 |
|
116 |
|
|
|
143 |
a.rsplit("_", 1)[1].split("-")[0].lower()
|
144 |
for a in _get_dataset_config_names("Eurolingua/mmlux", trust_remote_code=True)
|
145 |
)
|
146 |
+
tags_mmlu_autotranslated = _get_dataset_config_names("fair-forward/mmlu-autotranslated")
|
|
|
|
|
|
|
147 |
|
148 |
categories = sorted(
|
149 |
+
list(set(_load_dataset("masakhane/afrimmlu", "eng")["dev"]["subject"]))
|
150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
|
153 |
+
def load_mmlu(language_bcp_47, nr):
|
154 |
category = categories[nr % len(categories)]
|
155 |
if language_bcp_47 in tags_afrimmlu.keys():
|
156 |
+
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
157 |
+
ds = ds.map(parse_choices)
|
158 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
159 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
160 |
+
return "masakhane/afrimmlu", examples, task
|
161 |
elif language_bcp_47 in tags_global_mmlu.keys():
|
162 |
+
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
163 |
+
ds = ds.map(add_choices)
|
164 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
165 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
166 |
+
return "CohereForAI/Global-MMLU", examples, task
|
167 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
168 |
+
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47)
|
169 |
+
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
170 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
171 |
+
return "fair-forward/mmlu-autotranslated", examples, task
|
|
|
|
|
|
|
|
|
172 |
else:
|
173 |
return None, None, None
|
174 |
|
|
|
177 |
human_translated = [*tags_afrimmlu.keys(), *tags_global_mmlu.keys()]
|
178 |
untranslated = [
|
179 |
lang
|
180 |
+
for lang in languages["bcp_47"].values[:100]
|
181 |
+
if lang not in human_translated and lang in google_supported_languages
|
182 |
]
|
183 |
+
n_samples = 10
|
184 |
|
185 |
slug = "fair-forward/mmlu-autotranslated"
|
186 |
for lang in tqdm(untranslated):
|
|
|
196 |
if split == "dev":
|
197 |
samples.extend(ds.filter(lambda x: x["subject"] == category))
|
198 |
else:
|
199 |
+
for i in range(n_samples):
|
200 |
+
task = ds.filter(lambda x: x["subject"] == category)[i]
|
|
|
|
|
201 |
samples.append(task)
|
202 |
questions_tr = [
|
203 |
translate_google(s["question"], "en", lang) for s in samples
|
evals/datasets_/truthfulqa.py
CHANGED
@@ -8,29 +8,17 @@ import asyncio
|
|
8 |
from tqdm.asyncio import tqdm_asyncio
|
9 |
import os
|
10 |
|
11 |
-
from datasets import Dataset, load_dataset
|
12 |
-
from models import translate_google,
|
13 |
|
14 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
15 |
|
16 |
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
|
17 |
-
slug_truthfulqa_autotranslated = "fair-forward/truthfulqa-autotranslated"
|
18 |
-
|
19 |
tags_uhura_truthfulqa = {
|
20 |
-
standardize_tag(a.split("_")[0], macro=True): a
|
21 |
-
for a in _get_dataset_config_names(slug_uhura_truthfulqa)
|
22 |
if a.endswith("multiple_choice")
|
23 |
}
|
24 |
|
25 |
-
# Get available auto-translated languages
|
26 |
-
try:
|
27 |
-
tags_truthfulqa_autotranslated = {
|
28 |
-
standardize_tag(a, macro=True): a
|
29 |
-
for a in _get_dataset_config_names(slug_truthfulqa_autotranslated)
|
30 |
-
}
|
31 |
-
except DatasetNotFoundError:
|
32 |
-
tags_truthfulqa_autotranslated = {}
|
33 |
-
|
34 |
|
35 |
def add_choices(row):
|
36 |
row["choices"] = row["mc1_targets"]["choices"]
|
@@ -38,42 +26,26 @@ def add_choices(row):
|
|
38 |
return row
|
39 |
|
40 |
|
41 |
-
|
42 |
if language_bcp_47 in tags_uhura_truthfulqa.keys():
|
43 |
-
ds = _load_dataset(
|
44 |
-
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
|
45 |
-
)
|
46 |
ds = ds.map(add_choices)
|
|
|
47 |
task = ds["test"][nr]
|
48 |
-
|
49 |
-
if 1 not in task["labels"]:
|
50 |
-
return None, None, None
|
51 |
-
return "masakhane/uhura-truthfulqa", task, "human"
|
52 |
-
elif language_bcp_47 in tags_truthfulqa_autotranslated.keys():
|
53 |
-
# Load from auto-translated dataset (same samples as translation)
|
54 |
-
ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
|
55 |
-
test_split = ds["test"] if "test" in ds else ds
|
56 |
-
task = test_split[nr]
|
57 |
-
# Ensure there is a correct answer before returning the task
|
58 |
-
if 1 not in task.get("labels", []):
|
59 |
-
return None, None, None
|
60 |
-
return slug_truthfulqa_autotranslated, task, "machine"
|
61 |
-
# TODO: add Okapi, TruthfulQA-X @Jonas
|
62 |
else:
|
63 |
return None, None, None
|
64 |
|
65 |
|
|
|
66 |
def translate_truthfulqa(languages):
|
67 |
human_translated = [*tags_uhura_truthfulqa.keys()]
|
68 |
untranslated = [
|
69 |
lang
|
70 |
-
for lang in languages["bcp_47"].values[:
|
71 |
-
if lang not in human_translated and lang in
|
72 |
]
|
73 |
-
n_samples =
|
74 |
-
|
75 |
-
# Set fixed seed for consistent sample selection across all languages
|
76 |
-
random.seed(42)
|
77 |
|
78 |
slug = "fair-forward/truthfulqa-autotranslated"
|
79 |
for lang in tqdm(untranslated):
|
@@ -83,47 +55,37 @@ def translate_truthfulqa(languages):
|
|
83 |
except (ValueError, Exception):
|
84 |
print(f"Translating {lang}...")
|
85 |
for split in ["train", "test"]:
|
86 |
-
ds = _load_dataset(
|
87 |
-
slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split
|
88 |
-
)
|
89 |
samples = []
|
90 |
if split == "train":
|
91 |
samples.extend(ds)
|
92 |
else:
|
93 |
-
|
94 |
-
for i in range(min(n_samples, len(ds))):
|
95 |
task = ds[i]
|
96 |
samples.append(task)
|
97 |
-
|
98 |
-
# Translate questions
|
99 |
questions_tr = [
|
100 |
translate_google(s["question"], "en", lang) for s in samples
|
101 |
]
|
102 |
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
|
103 |
-
|
104 |
-
# Translate choices for each sample
|
105 |
-
all_choices_tr = []
|
106 |
-
all_labels = []
|
107 |
-
|
108 |
for s in samples:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
choices_tr
|
118 |
-
|
119 |
-
all_choices_tr.append(choices_tr)
|
120 |
-
all_labels.append(labels)
|
121 |
|
122 |
ds_lang = Dataset.from_dict(
|
123 |
{
|
|
|
124 |
"question": questions_tr,
|
125 |
-
"choices":
|
126 |
-
"
|
127 |
}
|
128 |
)
|
129 |
ds_lang.push_to_hub(
|
@@ -133,7 +95,7 @@ def translate_truthfulqa(languages):
|
|
133 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
134 |
)
|
135 |
ds_lang.to_json(
|
136 |
-
f"data/translations/
|
137 |
lines=False,
|
138 |
force_ascii=False,
|
139 |
indent=2,
|
|
|
8 |
from tqdm.asyncio import tqdm_asyncio
|
9 |
import os
|
10 |
|
11 |
+
from datasets import Dataset, load_dataset
|
12 |
+
from models import translate_google, google_supported_languages
|
13 |
|
14 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
15 |
|
16 |
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
|
|
|
|
|
17 |
tags_uhura_truthfulqa = {
|
18 |
+
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
|
|
|
19 |
if a.endswith("multiple_choice")
|
20 |
}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def add_choices(row):
|
24 |
row["choices"] = row["mc1_targets"]["choices"]
|
|
|
26 |
return row
|
27 |
|
28 |
|
29 |
+
def load_truthfulqa(language_bcp_47, nr):
|
30 |
if language_bcp_47 in tags_uhura_truthfulqa.keys():
|
31 |
+
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47])
|
|
|
|
|
32 |
ds = ds.map(add_choices)
|
33 |
+
examples = ds["train"]
|
34 |
task = ds["test"][nr]
|
35 |
+
return "masakhane/uhura-truthfulqa", examples, task
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
else:
|
37 |
return None, None, None
|
38 |
|
39 |
|
40 |
+
|
41 |
def translate_truthfulqa(languages):
|
42 |
human_translated = [*tags_uhura_truthfulqa.keys()]
|
43 |
untranslated = [
|
44 |
lang
|
45 |
+
for lang in languages["bcp_47"].values[:100]
|
46 |
+
if lang not in human_translated and lang in google_supported_languages
|
47 |
]
|
48 |
+
n_samples = 10
|
|
|
|
|
|
|
49 |
|
50 |
slug = "fair-forward/truthfulqa-autotranslated"
|
51 |
for lang in tqdm(untranslated):
|
|
|
55 |
except (ValueError, Exception):
|
56 |
print(f"Translating {lang}...")
|
57 |
for split in ["train", "test"]:
|
58 |
+
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
|
|
|
|
|
59 |
samples = []
|
60 |
if split == "train":
|
61 |
samples.extend(ds)
|
62 |
else:
|
63 |
+
for i in range(n_samples):
|
|
|
64 |
task = ds[i]
|
65 |
samples.append(task)
|
|
|
|
|
66 |
questions_tr = [
|
67 |
translate_google(s["question"], "en", lang) for s in samples
|
68 |
]
|
69 |
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
|
70 |
+
choices_texts_concatenated = []
|
|
|
|
|
|
|
|
|
71 |
for s in samples:
|
72 |
+
for choice in eval(s["choices"]):
|
73 |
+
choices_texts_concatenated.append(choice)
|
74 |
+
choices_tr = [
|
75 |
+
translate_google(c, "en", lang) for c in choices_texts_concatenated
|
76 |
+
]
|
77 |
+
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
|
78 |
+
# group into chunks of 4
|
79 |
+
choices_tr = [
|
80 |
+
choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4)
|
81 |
+
]
|
|
|
|
|
82 |
|
83 |
ds_lang = Dataset.from_dict(
|
84 |
{
|
85 |
+
"subject": [s["subject"] for s in samples],
|
86 |
"question": questions_tr,
|
87 |
+
"choices": choices_tr,
|
88 |
+
"answer": [s["answer"] for s in samples],
|
89 |
}
|
90 |
)
|
91 |
ds_lang.push_to_hub(
|
|
|
95 |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
|
96 |
)
|
97 |
ds_lang.to_json(
|
98 |
+
f"data/translations/mmlu/{lang}_{split}.json",
|
99 |
lines=False,
|
100 |
force_ascii=False,
|
101 |
indent=2,
|
evals/datasets_/util.py
CHANGED
@@ -12,11 +12,3 @@ def _get_dataset_config_names(dataset, **kwargs):
|
|
12 |
@cache
|
13 |
def _load_dataset(dataset, subset, **kwargs):
|
14 |
return load_dataset(dataset, subset, **kwargs)
|
15 |
-
|
16 |
-
|
17 |
-
# Cache individual dataset items to avoid reloading entire datasets
|
18 |
-
@cache
|
19 |
-
def _get_dataset_item(dataset, subset, split, index, **kwargs):
|
20 |
-
"""Load a single item from a dataset efficiently"""
|
21 |
-
ds = load_dataset(dataset, subset, split=split, **kwargs)
|
22 |
-
return ds[index] if index < len(ds) else None
|
|
|
12 |
@cache
|
13 |
def _load_dataset(dataset, subset, **kwargs):
|
14 |
return load_dataset(dataset, subset, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evals/download_data.py
CHANGED
@@ -8,7 +8,6 @@ from pathlib import Path
|
|
8 |
import sys
|
9 |
import huggingface_hub
|
10 |
from datasets import load_dataset, DatasetDict
|
11 |
-
|
12 |
# Import fleurs DataFrame directly from its source module
|
13 |
from datasets_.fleurs import fleurs
|
14 |
|
@@ -25,25 +24,22 @@ DATA_DIR = project_root / "data"
|
|
25 |
FLEURS_BASE_URL = "https://huggingface.co/datasets/google/fleurs/resolve/main/data"
|
26 |
FLEURS_TARGET_DIR = DATA_DIR / "fleurs"
|
27 |
|
28 |
-
GLOTTOLOG_URL = "https://cdstar.shh.mpg.de/bitstreams/EAEA0-B44E-8CEC-EA65-0/glottolog_languoid.zip"
|
29 |
GLOTTOLOG_TARGET_DIR = DATA_DIR / "glottolog_languoid.csv"
|
30 |
GLOTTOLOG_CSV_NAME = "languoid.csv"
|
31 |
|
32 |
-
SCRIPTCODES_URL = "https://www.unicode.org/iso15924/iso15924-codes.html"
|
33 |
SCRIPTCODES_TARGET_FILE = DATA_DIR / "ScriptCodes.csv"
|
34 |
|
35 |
-
SPBLEU_SPM_URL = "https://tinyurl.com/flores200sacrebleuspm"
|
36 |
SPBLEU_TARGET_DIR = DATA_DIR / "spbleu"
|
37 |
SPBLEU_SPM_NAME = "flores200_sacrebleu_tokenizer_spm.model"
|
38 |
-
SPBLEU_DICT_URL =
|
39 |
-
"https://dl.fbaipublicfiles.com/large_objects/nllb/models/spm_200/dictionary.txt"
|
40 |
-
)
|
41 |
SPBLEU_DICT_NAME = "dictionary.txt"
|
42 |
|
43 |
|
44 |
# --- Helper Functions ---
|
45 |
|
46 |
-
|
47 |
def download_file(url, path: Path):
|
48 |
"""Downloads a file from a URL to a local path."""
|
49 |
print(f"Downloading {url} to {path}...")
|
@@ -88,16 +84,11 @@ def extract_zip(zip_content: bytes, extract_path: Path, target_filename: str):
|
|
88 |
break
|
89 |
|
90 |
if target_zip_path:
|
91 |
-
with (
|
92 |
-
z.open(target_zip_path) as source,
|
93 |
-
open(extract_path / target_filename, "wb") as target,
|
94 |
-
):
|
95 |
target.write(source.read())
|
96 |
print(f"Successfully extracted {target_filename}.")
|
97 |
else:
|
98 |
-
print(
|
99 |
-
f"Error: Could not find {target_filename} within the zip archive."
|
100 |
-
)
|
101 |
|
102 |
except zipfile.BadZipFile:
|
103 |
print("Error: Downloaded file is not a valid zip archive.")
|
@@ -107,14 +98,13 @@ def extract_zip(zip_content: bytes, extract_path: Path, target_filename: str):
|
|
107 |
|
108 |
# --- Download Functions ---
|
109 |
|
110 |
-
|
111 |
def download_fleurs_data():
|
112 |
"""Downloads Fleurs audio and text data."""
|
113 |
print("\n--- Downloading Fleurs Data ---")
|
114 |
FLEURS_TARGET_DIR.mkdir(parents=True, exist_ok=True)
|
115 |
|
116 |
# Use the fleurs_tag column from the imported DataFrame
|
117 |
-
fleurs_tags_list = fleurs[
|
118 |
|
119 |
if not fleurs_tags_list:
|
120 |
print("No Fleurs tags found in imported fleurs DataFrame. Skipping Fleurs.")
|
@@ -127,9 +117,7 @@ def download_fleurs_data():
|
|
127 |
audio_dir = lang_dir / "audio"
|
128 |
dev_tsv_path = lang_dir / "dev.tsv"
|
129 |
dev_audio_archive_path = audio_dir / "dev.tar.gz"
|
130 |
-
audio_extracted_marker =
|
131 |
-
audio_dir / "dev"
|
132 |
-
) # Check if extraction likely happened
|
133 |
|
134 |
# Download TSV
|
135 |
if not dev_tsv_path.exists():
|
@@ -141,15 +129,15 @@ def download_fleurs_data():
|
|
141 |
# Download and Extract Audio
|
142 |
if not audio_extracted_marker.exists():
|
143 |
if not dev_audio_archive_path.exists():
|
144 |
-
|
145 |
-
|
146 |
|
147 |
if dev_audio_archive_path.exists():
|
148 |
-
|
149 |
else:
|
150 |
print(f"Audio archive missing, cannot extract for {lang_tag}")
|
151 |
else:
|
152 |
-
|
153 |
|
154 |
|
155 |
def download_glottolog_data():
|
@@ -177,9 +165,7 @@ def download_scriptcodes_data():
|
|
177 |
# The URL points to an HTML page, not a direct CSV link.
|
178 |
# Manual download is likely required for ScriptCodes.csv.
|
179 |
print(f"Cannot automatically download from {SCRIPTCODES_URL}")
|
180 |
-
print(
|
181 |
-
"Please manually download the ISO 15924 codes list (often available as a .txt file)"
|
182 |
-
)
|
183 |
print("from the Unicode website or related sources and save it as:")
|
184 |
print(f"{SCRIPTCODES_TARGET_FILE}")
|
185 |
if SCRIPTCODES_TARGET_FILE.exists():
|
@@ -210,24 +196,21 @@ def download_spbleu_data():
|
|
210 |
|
211 |
# --- Main Execution ---
|
212 |
|
213 |
-
|
214 |
def main():
|
215 |
"""Runs all download functions and the conversion step."""
|
216 |
print("Starting data download process...")
|
217 |
DATA_DIR.mkdir(exist_ok=True)
|
218 |
|
219 |
-
#
|
220 |
download_glottolog_data()
|
221 |
download_scriptcodes_data()
|
222 |
download_spbleu_data()
|
223 |
|
224 |
print("\nData download process finished.")
|
225 |
print("Please verify downloads and manually obtain ScriptCodes.csv if needed.")
|
226 |
-
print(
|
227 |
-
"Note: Flores+ was downloaded as parquet, which might require changes but has been processed as well"
|
228 |
-
)
|
229 |
print("in 'evals/datasets_/flores.py' to be read correctly.")
|
230 |
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
-
main()
|
|
|
8 |
import sys
|
9 |
import huggingface_hub
|
10 |
from datasets import load_dataset, DatasetDict
|
|
|
11 |
# Import fleurs DataFrame directly from its source module
|
12 |
from datasets_.fleurs import fleurs
|
13 |
|
|
|
24 |
FLEURS_BASE_URL = "https://huggingface.co/datasets/google/fleurs/resolve/main/data"
|
25 |
FLEURS_TARGET_DIR = DATA_DIR / "fleurs"
|
26 |
|
27 |
+
GLOTTOLOG_URL = "https://cdstar.shh.mpg.de/bitstreams/EAEA0-B44E-8CEC-EA65-0/glottolog_languoid.zip" # Assumed direct link from https://glottolog.org/meta/downloads
|
28 |
GLOTTOLOG_TARGET_DIR = DATA_DIR / "glottolog_languoid.csv"
|
29 |
GLOTTOLOG_CSV_NAME = "languoid.csv"
|
30 |
|
31 |
+
SCRIPTCODES_URL = "https://www.unicode.org/iso15924/iso15924-codes.html" # This is HTML, need manual download or parsing
|
32 |
SCRIPTCODES_TARGET_FILE = DATA_DIR / "ScriptCodes.csv"
|
33 |
|
34 |
+
SPBLEU_SPM_URL = "https://tinyurl.com/flores200sacrebleuspm" # Assumed direct link
|
35 |
SPBLEU_TARGET_DIR = DATA_DIR / "spbleu"
|
36 |
SPBLEU_SPM_NAME = "flores200_sacrebleu_tokenizer_spm.model"
|
37 |
+
SPBLEU_DICT_URL = "https://dl.fbaipublicfiles.com/large_objects/nllb/models/spm_200/dictionary.txt"
|
|
|
|
|
38 |
SPBLEU_DICT_NAME = "dictionary.txt"
|
39 |
|
40 |
|
41 |
# --- Helper Functions ---
|
42 |
|
|
|
43 |
def download_file(url, path: Path):
|
44 |
"""Downloads a file from a URL to a local path."""
|
45 |
print(f"Downloading {url} to {path}...")
|
|
|
84 |
break
|
85 |
|
86 |
if target_zip_path:
|
87 |
+
with z.open(target_zip_path) as source, open(extract_path / target_filename, "wb") as target:
|
|
|
|
|
|
|
88 |
target.write(source.read())
|
89 |
print(f"Successfully extracted {target_filename}.")
|
90 |
else:
|
91 |
+
print(f"Error: Could not find {target_filename} within the zip archive.")
|
|
|
|
|
92 |
|
93 |
except zipfile.BadZipFile:
|
94 |
print("Error: Downloaded file is not a valid zip archive.")
|
|
|
98 |
|
99 |
# --- Download Functions ---
|
100 |
|
|
|
101 |
def download_fleurs_data():
|
102 |
"""Downloads Fleurs audio and text data."""
|
103 |
print("\n--- Downloading Fleurs Data ---")
|
104 |
FLEURS_TARGET_DIR.mkdir(parents=True, exist_ok=True)
|
105 |
|
106 |
# Use the fleurs_tag column from the imported DataFrame
|
107 |
+
fleurs_tags_list = fleurs['fleurs_tag'].tolist()
|
108 |
|
109 |
if not fleurs_tags_list:
|
110 |
print("No Fleurs tags found in imported fleurs DataFrame. Skipping Fleurs.")
|
|
|
117 |
audio_dir = lang_dir / "audio"
|
118 |
dev_tsv_path = lang_dir / "dev.tsv"
|
119 |
dev_audio_archive_path = audio_dir / "dev.tar.gz"
|
120 |
+
audio_extracted_marker = audio_dir / "dev" # Check if extraction likely happened
|
|
|
|
|
121 |
|
122 |
# Download TSV
|
123 |
if not dev_tsv_path.exists():
|
|
|
129 |
# Download and Extract Audio
|
130 |
if not audio_extracted_marker.exists():
|
131 |
if not dev_audio_archive_path.exists():
|
132 |
+
tar_url = f"{FLEURS_BASE_URL}/{lang_tag}/audio/dev.tar.gz"
|
133 |
+
download_file(tar_url, dev_audio_archive_path)
|
134 |
|
135 |
if dev_audio_archive_path.exists():
|
136 |
+
extract_tar_gz(dev_audio_archive_path, audio_dir)
|
137 |
else:
|
138 |
print(f"Audio archive missing, cannot extract for {lang_tag}")
|
139 |
else:
|
140 |
+
print(f"Found extracted audio: {audio_extracted_marker}")
|
141 |
|
142 |
|
143 |
def download_glottolog_data():
|
|
|
165 |
# The URL points to an HTML page, not a direct CSV link.
|
166 |
# Manual download is likely required for ScriptCodes.csv.
|
167 |
print(f"Cannot automatically download from {SCRIPTCODES_URL}")
|
168 |
+
print(f"Please manually download the ISO 15924 codes list (often available as a .txt file)")
|
|
|
|
|
169 |
print("from the Unicode website or related sources and save it as:")
|
170 |
print(f"{SCRIPTCODES_TARGET_FILE}")
|
171 |
if SCRIPTCODES_TARGET_FILE.exists():
|
|
|
196 |
|
197 |
# --- Main Execution ---
|
198 |
|
|
|
199 |
def main():
|
200 |
"""Runs all download functions and the conversion step."""
|
201 |
print("Starting data download process...")
|
202 |
DATA_DIR.mkdir(exist_ok=True)
|
203 |
|
204 |
+
#download_fleurs_data()
|
205 |
download_glottolog_data()
|
206 |
download_scriptcodes_data()
|
207 |
download_spbleu_data()
|
208 |
|
209 |
print("\nData download process finished.")
|
210 |
print("Please verify downloads and manually obtain ScriptCodes.csv if needed.")
|
211 |
+
print("Note: Flores+ was downloaded as parquet, which might require changes but has been processed as well")
|
|
|
|
|
212 |
print("in 'evals/datasets_/flores.py' to be read correctly.")
|
213 |
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
+
main()
|
evals/languages.py
CHANGED
@@ -31,7 +31,6 @@ glottolog["bcp_47"] = glottolog["iso639P3code"].apply(
|
|
31 |
lambda x: standardize_tag(x, macro=True) if not pd.isna(x) else None
|
32 |
)
|
33 |
|
34 |
-
|
35 |
@cache
|
36 |
def language_family(bcp_47):
|
37 |
languoid = glottolog[glottolog["bcp_47"] == bcp_47].iloc[0]
|
@@ -40,7 +39,6 @@ def language_family(bcp_47):
|
|
40 |
family = glottolog[glottolog["id"] == languoid["family_id"]].iloc[0]
|
41 |
return family["name"]
|
42 |
|
43 |
-
|
44 |
languages["family"] = languages["bcp_47"].apply(language_family)
|
45 |
|
46 |
# load script codes and names
|
@@ -48,7 +46,6 @@ scripts = pd.read_csv("data/ScriptCodes.csv").rename(
|
|
48 |
columns={"Code": "iso15924", "English Name": "script_name"}
|
49 |
)
|
50 |
|
51 |
-
|
52 |
def script_name(iso15924):
|
53 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
54 |
|
|
|
31 |
lambda x: standardize_tag(x, macro=True) if not pd.isna(x) else None
|
32 |
)
|
33 |
|
|
|
34 |
@cache
|
35 |
def language_family(bcp_47):
|
36 |
languoid = glottolog[glottolog["bcp_47"] == bcp_47].iloc[0]
|
|
|
39 |
family = glottolog[glottolog["id"] == languoid["family_id"]].iloc[0]
|
40 |
return family["name"]
|
41 |
|
|
|
42 |
languages["family"] = languages["bcp_47"].apply(language_family)
|
43 |
|
44 |
# load script codes and names
|
|
|
46 |
columns={"Code": "iso15924", "English Name": "script_name"}
|
47 |
)
|
48 |
|
|
|
49 |
def script_name(iso15924):
|
50 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
51 |
|
evals/main.py
CHANGED
@@ -1,190 +1,62 @@
|
|
1 |
import asyncio
|
|
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
from datetime import datetime, timedelta
|
5 |
from models import models
|
6 |
from tasks import tasks
|
7 |
-
from
|
8 |
-
import os
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
# Configuration - easily adjustable defaults
|
13 |
-
n_sentences = int(
|
14 |
-
os.environ.get("N_SENTENCES", 20)
|
15 |
-
) # Default: 20 sentences per task
|
16 |
-
max_languages = int(
|
17 |
-
os.environ.get("MAX_LANGUAGES", 150)
|
18 |
-
) # Default: 150 top languages
|
19 |
-
single_model = os.environ.get(
|
20 |
-
"SINGLE_MODEL"
|
21 |
-
) # Optional: run only one specific model
|
22 |
-
test_mode = os.environ.get("TEST", "").lower() in (
|
23 |
-
"1",
|
24 |
-
"true",
|
25 |
-
"yes",
|
26 |
-
) # Optional: skip results loading/saving
|
27 |
-
|
28 |
-
# Keep original DataFrames for saving metadata - distinction added for single model test runs.
|
29 |
-
original_models_df = pd.DataFrame(models)
|
30 |
-
original_languages_df = pd.DataFrame(languages)
|
31 |
|
32 |
-
|
33 |
-
models_df = original_models_df.copy()
|
34 |
-
languages_df = original_languages_df.copy()
|
35 |
-
top_languages = languages.head(max_languages)
|
36 |
|
37 |
-
|
38 |
-
if single_model:
|
39 |
-
models_df = models_df[models_df["id"] == single_model]
|
40 |
-
if len(models_df) == 0:
|
41 |
-
print(f"Error: Model '{single_model}' not found. Available models:")
|
42 |
-
for model_id in original_models_df["id"]:
|
43 |
-
print(f" {model_id}")
|
44 |
-
return pd.DataFrame()
|
45 |
|
46 |
-
print(
|
47 |
-
f"Starting evaluation: {len(models_df)} models, {len(top_languages)} languages, {n_sentences} sentences per task"
|
48 |
-
)
|
49 |
-
if test_mode:
|
50 |
-
print("TEST MODE: Skipping results loading/saving")
|
51 |
-
start_time = time.time()
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
-
else:
|
59 |
old_results = pd.read_json("results.json")
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
# For full evaluations, we continue despite errors to get maximum coverage.
|
90 |
-
stop_on_error = single_model is not None
|
91 |
-
|
92 |
-
# Process tasks in batches to avoid memory issues (for full evaluation locally that helped a lot)
|
93 |
-
batch_size = 1000
|
94 |
-
all_results = []
|
95 |
-
|
96 |
-
try:
|
97 |
-
for i in range(0, len(all_tasks), batch_size):
|
98 |
-
batch = all_tasks[i : i + batch_size]
|
99 |
-
batch_results = await asyncio.gather(
|
100 |
-
*[
|
101 |
-
task_func(model, bcp_47, sentence_nr)
|
102 |
-
for task_func, model, bcp_47, sentence_nr in batch
|
103 |
-
],
|
104 |
-
return_exceptions=not stop_on_error,
|
105 |
)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
if isinstance(r, Exception):
|
116 |
-
if i < len(all_tasks):
|
117 |
-
task_info = all_tasks[i]
|
118 |
-
errors.append(f"{task_info[1]},{task_info[2]},{str(r)}")
|
119 |
-
elif isinstance(r, list):
|
120 |
-
valid_results.extend(r)
|
121 |
-
elif r is not None:
|
122 |
-
valid_results.append(r)
|
123 |
-
|
124 |
-
# log errors and store
|
125 |
-
if errors:
|
126 |
-
with open("errors.log", "w") as f:
|
127 |
-
f.write("model,task,error\n")
|
128 |
-
for error in errors:
|
129 |
-
f.write(error + "\n")
|
130 |
-
|
131 |
-
# Track model completion (TO BE DELETED - was for local run only)
|
132 |
-
if valid_results:
|
133 |
-
completed_models = set()
|
134 |
-
for result in valid_results:
|
135 |
-
if isinstance(result, dict) and "model" in result:
|
136 |
-
model = result["model"]
|
137 |
-
if model not in completed_models:
|
138 |
-
completed_models.add(model)
|
139 |
-
print(f"Completed: {model}")
|
140 |
-
|
141 |
-
print(f"Completed: {len(valid_results)} valid results, {len(errors)} errors")
|
142 |
-
|
143 |
-
# this is for local single model runs - for testing and development
|
144 |
-
except Exception as e:
|
145 |
-
print(f"EVALUATION STOPPED - API Error occurred:")
|
146 |
-
print(f"Error type: {type(e).__name__}")
|
147 |
-
print(f"Error message: {str(e)}")
|
148 |
-
return pd.DataFrame()
|
149 |
-
|
150 |
-
# Save results (skipped in test mode as we do not want to overwrite existing results)
|
151 |
-
if valid_results:
|
152 |
-
results_df = pd.DataFrame(valid_results)
|
153 |
-
|
154 |
-
# Aggregate results
|
155 |
-
results_df = (
|
156 |
-
results_df.groupby(["model", "bcp_47", "task", "metric", "origin"])
|
157 |
-
.agg({"score": "mean"})
|
158 |
-
.reset_index()
|
159 |
-
)
|
160 |
-
|
161 |
-
if not test_mode:
|
162 |
-
args = dict(orient="records", indent=2, force_ascii=False)
|
163 |
-
|
164 |
-
# Merge with existing results
|
165 |
-
if not old_results.empty:
|
166 |
-
results_df = pd.concat([old_results, results_df])
|
167 |
-
results_df = results_df.drop_duplicates(
|
168 |
-
subset=["model", "bcp_47", "task", "metric", "origin"]
|
169 |
-
)
|
170 |
-
|
171 |
-
results_df = results_df.sort_values(
|
172 |
-
by=["model", "bcp_47", "task", "metric"]
|
173 |
-
)
|
174 |
-
results_df.to_json("results.json", **args)
|
175 |
-
|
176 |
-
# Save model and language info (always save complete metadata, not filtered)
|
177 |
-
original_models_df.to_json("models.json", **args)
|
178 |
-
original_languages_df.to_json("languages.json", **args)
|
179 |
-
else:
|
180 |
-
print("TEST MODE: Skipping results saving")
|
181 |
-
|
182 |
-
elapsed = time.time() - start_time
|
183 |
-
print(f"Evaluation completed in {str(timedelta(seconds=int(elapsed)))}")
|
184 |
-
|
185 |
-
return results_df
|
186 |
-
|
187 |
-
return pd.DataFrame()
|
188 |
|
189 |
|
190 |
if __name__ == "__main__":
|
|
|
1 |
import asyncio
|
2 |
+
|
3 |
import pandas as pd
|
4 |
+
from languages import languages
|
|
|
5 |
from models import models
|
6 |
from tasks import tasks
|
7 |
+
from tqdm.asyncio import tqdm_asyncio
|
|
|
|
|
8 |
|
9 |
+
# ===== config =====
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
n_sentences = 10
|
|
|
|
|
|
|
12 |
|
13 |
+
# ===== run evaluation and aggregate results =====
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
async def evaluate():
|
17 |
+
# FIXME we should not need this for-loop, but it helps
|
18 |
+
for n_languages in range(10, 101, 10):
|
19 |
+
print(f"running evaluations for {n_languages} languages")
|
|
|
|
|
20 |
old_results = pd.read_json("results.json")
|
21 |
+
old_models = pd.read_json("models.json")
|
22 |
+
# get all combinations of model, language and task
|
23 |
+
combis = [
|
24 |
+
(model, lang.bcp_47, task_name)
|
25 |
+
for model in models["id"]
|
26 |
+
for lang in languages.iloc[:n_languages].itertuples()
|
27 |
+
for task_name, task in tasks.items()
|
28 |
+
if task_name in models[models["id"] == model]["tasks"].iloc[0]
|
29 |
+
]
|
30 |
+
# filter out combinations that have already been evaluated
|
31 |
+
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
32 |
+
combis = combis.merge(old_results, on=["model", "bcp_47", "task"], how="left")
|
33 |
+
combis = combis[combis["metric"].isna()][["model", "bcp_47", "task"]]
|
34 |
+
# run evaluations
|
35 |
+
results = [
|
36 |
+
tasks[task_name](model, bcp_47, i)
|
37 |
+
for i in range(n_sentences)
|
38 |
+
for model, bcp_47, task_name in combis.itertuples(index=False)
|
39 |
+
]
|
40 |
+
results = await tqdm_asyncio.gather(*results, miniters=1)
|
41 |
+
results = [r for group in results for r in group]
|
42 |
+
args = dict(orient="records", indent=2, force_ascii=False)
|
43 |
+
if results:
|
44 |
+
# aggregate results
|
45 |
+
results = pd.DataFrame(results)
|
46 |
+
results = (
|
47 |
+
results.groupby(["model", "bcp_47", "task", "metric"])
|
48 |
+
.agg({"score": "mean"})
|
49 |
+
.reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
+
# save results
|
52 |
+
results = pd.concat([old_results, results])
|
53 |
+
results = results.sort_values(by=["model", "bcp_47", "task", "metric"])
|
54 |
+
results.to_json("results.json", **args)
|
55 |
+
# save up-to-date info on models and languages
|
56 |
+
all_models = pd.concat([pd.DataFrame(models), old_models])
|
57 |
+
all_models = all_models.drop_duplicates(subset=["id"]).sort_values(by=["id"])
|
58 |
+
all_models.to_json("models.json", **args)
|
59 |
+
pd.DataFrame(languages).to_json("languages.json", **args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
evals/models.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import asyncio
|
2 |
import json
|
3 |
import re
|
4 |
from collections import defaultdict
|
@@ -8,6 +7,7 @@ from os import getenv
|
|
8 |
import pandas as pd
|
9 |
from aiolimiter import AsyncLimiter
|
10 |
from dotenv import load_dotenv
|
|
|
11 |
from google.cloud import translate_v2 as translate
|
12 |
from huggingface_hub import AsyncInferenceClient, HfApi
|
13 |
from joblib.memory import Memory
|
@@ -22,17 +22,14 @@ important_models = [
|
|
22 |
"meta-llama/llama-3.1-70b-instruct", # 0.3$
|
23 |
"meta-llama/llama-3-70b-instruct", # 0.4$
|
24 |
# "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter
|
25 |
-
"openai/gpt-5",
|
26 |
-
"openai/gpt-5-nano", # include if/when available
|
27 |
"openai/gpt-4.1", # 8$
|
28 |
"openai/gpt-4.1-mini", # 1.6$
|
29 |
"openai/gpt-4.1-nano", # 0.4$
|
30 |
"openai/gpt-4o-mini", # 0.6$
|
31 |
-
"openai/gpt-4o-2024-11-20",
|
32 |
-
"openai/gpt-
|
33 |
-
"
|
34 |
-
"anthropic/claude-
|
35 |
-
"anthropic/claude-opus-4.1", # 15$ - added for full coverage
|
36 |
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
|
37 |
"mistralai/mistral-saba", # 0.6$
|
38 |
"mistralai/mistral-nemo", # 0.08$
|
@@ -51,13 +48,10 @@ important_models = [
|
|
51 |
"microsoft/phi-4", # 0.07$
|
52 |
"microsoft/phi-4-multimodal-instruct", # 0.1$
|
53 |
"amazon/nova-micro-v1", # 0.09$
|
54 |
-
"moonshotai/kimi-k2", # 0.6$ - added to prevent missing from models.json
|
55 |
-
"x-ai/grok-4",
|
56 |
]
|
57 |
|
58 |
blocklist = [
|
59 |
"google/gemini-2.5-pro-preview",
|
60 |
-
"google/gemini-2.5-pro",
|
61 |
"google/gemini-2.5-flash-preview",
|
62 |
"google/gemini-2.5-flash-lite-preview",
|
63 |
"google/gemini-2.5-flash-preview-04-17",
|
@@ -65,7 +59,6 @@ blocklist = [
|
|
65 |
"google/gemini-2.5-flash-lite-preview-06-17",
|
66 |
"google/gemini-2.5-pro-preview-06-05",
|
67 |
"google/gemini-2.5-pro-preview-05-06",
|
68 |
-
"perplexity/sonar-deep-research",
|
69 |
]
|
70 |
|
71 |
transcription_models = [
|
@@ -100,81 +93,28 @@ def get_model(permaslug):
|
|
100 |
|
101 |
@cache
|
102 |
def get_historical_popular_models(date: date):
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
if matches:
|
116 |
-
# Aggregate model counts
|
117 |
-
model_counts = {}
|
118 |
-
for count_str, model_slug in matches:
|
119 |
-
count = float(count_str)
|
120 |
-
if not model_slug.startswith("openrouter") and model_slug != "Others":
|
121 |
-
# Remove variant suffixes for aggregation
|
122 |
-
base_model = model_slug.split(":")[0]
|
123 |
-
model_counts[base_model] = model_counts.get(base_model, 0) + count
|
124 |
-
|
125 |
-
# Sort by popularity and return top models
|
126 |
-
sorted_models = sorted(
|
127 |
-
model_counts.items(), key=lambda x: x[1], reverse=True
|
128 |
-
)
|
129 |
-
result = []
|
130 |
-
for model_slug, count in sorted_models[:20]: # Top 20
|
131 |
-
result.append({"slug": model_slug, "count": int(count)})
|
132 |
-
|
133 |
-
return result
|
134 |
-
else:
|
135 |
-
return []
|
136 |
-
|
137 |
-
except Exception as e:
|
138 |
-
return []
|
139 |
|
140 |
|
141 |
@cache
|
142 |
def get_current_popular_models(date: date):
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
# Find all count and model_permaslug pairs in the daily data
|
151 |
-
pattern = r"\\\"count\\\":([\d.]+).*?\\\"model_permaslug\\\":\\\"([^\\\"]+)\\\""
|
152 |
-
matches = re.findall(pattern, raw)
|
153 |
-
|
154 |
-
if matches:
|
155 |
-
# Aggregate model counts
|
156 |
-
model_counts = {}
|
157 |
-
for count_str, model_slug in matches:
|
158 |
-
count = float(count_str)
|
159 |
-
if not model_slug.startswith("openrouter") and model_slug != "Others":
|
160 |
-
# Remove variant suffixes for aggregation
|
161 |
-
base_model = model_slug.split(":")[0]
|
162 |
-
model_counts[base_model] = model_counts.get(base_model, 0) + count
|
163 |
-
|
164 |
-
# Sort by popularity and return top models
|
165 |
-
sorted_models = sorted(
|
166 |
-
model_counts.items(), key=lambda x: x[1], reverse=True
|
167 |
-
)
|
168 |
-
result = []
|
169 |
-
for model_slug, count in sorted_models[:10]: # Top 10
|
170 |
-
result.append({"slug": model_slug, "count": int(count)})
|
171 |
-
|
172 |
-
return result
|
173 |
-
else:
|
174 |
-
return []
|
175 |
-
|
176 |
-
except Exception as e:
|
177 |
-
return []
|
178 |
|
179 |
|
180 |
def get_translation_models():
|
@@ -221,10 +161,7 @@ async def complete(**kwargs) -> str | None:
|
|
221 |
|
222 |
|
223 |
translate_client = translate.Client()
|
224 |
-
|
225 |
-
|
226 |
-
def get_google_supported_languages():
|
227 |
-
return [l["language"] for l in translate_client.get_languages()]
|
228 |
|
229 |
|
230 |
@cache
|
@@ -294,15 +231,12 @@ def get_hf_metadata(row):
|
|
294 |
return empty
|
295 |
try:
|
296 |
info = api.model_info(id)
|
297 |
-
license =
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
)
|
303 |
-
license = (
|
304 |
-
info.card_data.license.replace("-", " ").replace("mit", "MIT").title()
|
305 |
-
)
|
306 |
return {
|
307 |
"hf_id": info.id,
|
308 |
"creation_date": info.created_at,
|
@@ -315,14 +249,8 @@ def get_hf_metadata(row):
|
|
315 |
|
316 |
|
317 |
def get_cost(row):
|
318 |
-
"""
|
319 |
-
|
320 |
-
"""
|
321 |
-
try:
|
322 |
-
cost = float(row["endpoint"]["pricing"]["completion"])
|
323 |
-
return round(cost * 1_000_000, 2)
|
324 |
-
except (TypeError, KeyError):
|
325 |
-
return None
|
326 |
|
327 |
|
328 |
@cache
|
@@ -332,17 +260,8 @@ def load_models(date: date):
|
|
332 |
+ get_current_popular_models(date.today())[:10]
|
333 |
)
|
334 |
popular_models = [m["slug"] for m in popular_models]
|
335 |
-
|
336 |
-
|
337 |
-
# Validate models exist on OpenRouter before including them
|
338 |
-
valid_models = []
|
339 |
-
|
340 |
-
for model_id in all_model_candidates:
|
341 |
-
metadata = get_or_metadata(model_id)
|
342 |
-
if metadata is not None:
|
343 |
-
valid_models.append(model_id)
|
344 |
-
|
345 |
-
models = pd.DataFrame(sorted(valid_models), columns=["id"])
|
346 |
or_metadata = models["id"].apply(get_or_metadata)
|
347 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
348 |
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
|
@@ -362,18 +281,9 @@ def load_models(date: date):
|
|
362 |
license=hf_metadata.str["license"],
|
363 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
364 |
)
|
365 |
-
#
|
366 |
-
models = models[models["cost"] <= 15.0].reset_index(drop=True)
|
367 |
models["tasks"] = [
|
368 |
-
[
|
369 |
-
"translation_from",
|
370 |
-
"translation_to",
|
371 |
-
"classification",
|
372 |
-
"mmlu",
|
373 |
-
"arc",
|
374 |
-
"truthfulqa",
|
375 |
-
"mgsm",
|
376 |
-
]
|
377 |
] * len(models)
|
378 |
models = pd.concat([models, get_translation_models()])
|
379 |
return models
|
|
|
|
|
1 |
import json
|
2 |
import re
|
3 |
from collections import defaultdict
|
|
|
7 |
import pandas as pd
|
8 |
from aiolimiter import AsyncLimiter
|
9 |
from dotenv import load_dotenv
|
10 |
+
from elevenlabs import AsyncElevenLabs
|
11 |
from google.cloud import translate_v2 as translate
|
12 |
from huggingface_hub import AsyncInferenceClient, HfApi
|
13 |
from joblib.memory import Memory
|
|
|
22 |
"meta-llama/llama-3.1-70b-instruct", # 0.3$
|
23 |
"meta-llama/llama-3-70b-instruct", # 0.4$
|
24 |
# "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter
|
|
|
|
|
25 |
"openai/gpt-4.1", # 8$
|
26 |
"openai/gpt-4.1-mini", # 1.6$
|
27 |
"openai/gpt-4.1-nano", # 0.4$
|
28 |
"openai/gpt-4o-mini", # 0.6$
|
29 |
+
# "openai/gpt-4o-2024-11-20", # 10$
|
30 |
+
"openai/gpt-3.5-turbo-0613", # 2$
|
31 |
+
# "openai/gpt-3.5-turbo", # 1.5$
|
32 |
+
# "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev
|
|
|
33 |
"mistralai/mistral-small-3.1-24b-instruct", # 0.3$
|
34 |
"mistralai/mistral-saba", # 0.6$
|
35 |
"mistralai/mistral-nemo", # 0.08$
|
|
|
48 |
"microsoft/phi-4", # 0.07$
|
49 |
"microsoft/phi-4-multimodal-instruct", # 0.1$
|
50 |
"amazon/nova-micro-v1", # 0.09$
|
|
|
|
|
51 |
]
|
52 |
|
53 |
blocklist = [
|
54 |
"google/gemini-2.5-pro-preview",
|
|
|
55 |
"google/gemini-2.5-flash-preview",
|
56 |
"google/gemini-2.5-flash-lite-preview",
|
57 |
"google/gemini-2.5-flash-preview-04-17",
|
|
|
59 |
"google/gemini-2.5-flash-lite-preview-06-17",
|
60 |
"google/gemini-2.5-pro-preview-06-05",
|
61 |
"google/gemini-2.5-pro-preview-05-06",
|
|
|
62 |
]
|
63 |
|
64 |
transcription_models = [
|
|
|
93 |
|
94 |
@cache
|
95 |
def get_historical_popular_models(date: date):
|
96 |
+
raw = get("https://openrouter.ai/rankings").text
|
97 |
+
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
|
98 |
+
data = json.loads(data.replace("\\", ""))
|
99 |
+
counts = defaultdict(int)
|
100 |
+
for day in data:
|
101 |
+
for model, count in day["ys"].items():
|
102 |
+
if model.startswith("openrouter") or model == "Others":
|
103 |
+
continue
|
104 |
+
counts[model.split(":")[0]] += count
|
105 |
+
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
|
106 |
+
models = [get_model(model) for model, _ in counts]
|
107 |
+
return [m for m in models if m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
@cache
|
111 |
def get_current_popular_models(date: date):
|
112 |
+
raw = get("https://openrouter.ai/rankings?view=day").text.replace("\\", "")
|
113 |
+
data = re.search(r'"rankingData":(.*),"rankingType":"day"', raw).group(1)
|
114 |
+
data = json.loads(data)
|
115 |
+
data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True)
|
116 |
+
models = [get_model(model["model_permaslug"]) for model in data]
|
117 |
+
return [m for m in models if m]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
|
120 |
def get_translation_models():
|
|
|
161 |
|
162 |
|
163 |
translate_client = translate.Client()
|
164 |
+
google_supported_languages = [l["language"] for l in translate_client.get_languages()]
|
|
|
|
|
|
|
165 |
|
166 |
|
167 |
@cache
|
|
|
231 |
return empty
|
232 |
try:
|
233 |
info = api.model_info(id)
|
234 |
+
license = (
|
235 |
+
(info.card_data.license or "")
|
236 |
+
.replace("-", " ")
|
237 |
+
.replace("mit", "MIT")
|
238 |
+
.title()
|
239 |
+
)
|
|
|
|
|
|
|
240 |
return {
|
241 |
"hf_id": info.id,
|
242 |
"creation_date": info.created_at,
|
|
|
249 |
|
250 |
|
251 |
def get_cost(row):
|
252 |
+
cost = float(row["endpoint"]["pricing"]["completion"])
|
253 |
+
return round(cost * 1_000_000, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
|
256 |
@cache
|
|
|
260 |
+ get_current_popular_models(date.today())[:10]
|
261 |
)
|
262 |
popular_models = [m["slug"] for m in popular_models]
|
263 |
+
models = set(important_models + popular_models) - set(blocklist)
|
264 |
+
models = pd.DataFrame(sorted(list(models)), columns=["id"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
or_metadata = models["id"].apply(get_or_metadata)
|
266 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
267 |
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
|
|
|
281 |
license=hf_metadata.str["license"],
|
282 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
283 |
)
|
284 |
+
# models = models[models["cost"] <= 2.0].reset_index(drop=True)
|
|
|
285 |
models["tasks"] = [
|
286 |
+
["translation_from", "translation_to", "classification", "mmlu", "arc", "truthfulqa", "mgsm"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
] * len(models)
|
288 |
models = pd.concat([models, get_translation_models()])
|
289 |
return models
|
evals/plots.py
CHANGED
@@ -9,33 +9,34 @@ df = pd.read_json("../results.json")
|
|
9 |
df = df[df["metric"] != "chrf"]
|
10 |
df = df.groupby(["task", "metric", "bcp_47"]).agg({"score": "mean"}).reset_index()
|
11 |
|
12 |
-
|
13 |
# Apply logit transformation to classification scores to reduce skewness
|
14 |
def transform_classification_scores(row):
|
15 |
-
if row[
|
16 |
# Avoid division by zero and infinite values by clipping
|
17 |
-
score = np.clip(row[
|
18 |
# Apply logit transformation (log(p/(1-p)))
|
19 |
return logit(score)
|
20 |
else:
|
21 |
-
return row[
|
22 |
-
|
23 |
|
24 |
-
df[
|
25 |
|
26 |
# Create a pivot table with tasks as columns and languages as rows
|
27 |
pivot_df = df.pivot_table(
|
28 |
-
values=
|
|
|
|
|
|
|
29 |
)
|
30 |
|
31 |
# Sort and filter tasks
|
32 |
ordered_tasks = [
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
]
|
40 |
# Drop 'truthfulqa' if present and reindex columns
|
41 |
pivot_df = pivot_df[[task for task in ordered_tasks if task in pivot_df.columns]]
|
@@ -45,29 +46,29 @@ correlation_matrix = pivot_df.corr()
|
|
45 |
|
46 |
# Create the correlation plot
|
47 |
plt.figure(figsize=(8, 6))
|
48 |
-
# Create mask for upper triangle including diagonal to show only lower triangle
|
49 |
mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))
|
50 |
|
51 |
# Create a heatmap
|
52 |
sns.heatmap(
|
53 |
-
correlation_matrix,
|
54 |
-
annot=True,
|
55 |
-
cmap=
|
56 |
center=0,
|
57 |
square=True,
|
58 |
mask=mask,
|
59 |
-
cbar_kws={"shrink":
|
60 |
-
fmt=
|
61 |
)
|
62 |
|
63 |
-
plt.xlabel(
|
64 |
-
plt.ylabel(
|
65 |
-
plt.xticks(rotation=45, ha=
|
66 |
plt.yticks(rotation=0)
|
67 |
plt.tight_layout()
|
68 |
|
69 |
# Save the plot
|
70 |
-
plt.savefig(
|
71 |
plt.show()
|
72 |
|
73 |
# Print correlation values for reference
|
@@ -76,91 +77,56 @@ print("Note: Classification scores have been logit-transformed to reduce skewnes
|
|
76 |
print(correlation_matrix.round(3))
|
77 |
|
78 |
# Also create a scatter plot matrix for pairwise relationships with highlighted languages
|
79 |
-
highlighted_languages = [
|
80 |
-
|
81 |
|
82 |
# Create color mapping
|
83 |
def get_color_and_label(lang_code):
|
84 |
if lang_code in highlighted_languages:
|
85 |
-
color_map = {
|
86 |
-
"en": "red",
|
87 |
-
"zh": "blue",
|
88 |
-
"hi": "green",
|
89 |
-
"es": "orange",
|
90 |
-
"ar": "purple",
|
91 |
-
}
|
92 |
return color_map[lang_code], lang_code
|
93 |
else:
|
94 |
-
return
|
95 |
-
|
96 |
|
97 |
# Create custom scatter plot matrix
|
98 |
tasks = pivot_df.columns.tolist()
|
99 |
n_tasks = len(tasks)
|
100 |
|
101 |
fig, axes = plt.subplots(n_tasks, n_tasks, figsize=(15, 12))
|
102 |
-
fig.suptitle(
|
103 |
|
104 |
# Create legend elements
|
105 |
legend_elements = []
|
106 |
for lang in highlighted_languages:
|
107 |
color, _ = get_color_and_label(lang)
|
108 |
-
legend_elements.append(
|
109 |
-
|
110 |
-
[0],
|
111 |
-
[0],
|
112 |
-
marker="o",
|
113 |
-
color="w",
|
114 |
-
markerfacecolor=color,
|
115 |
-
markersize=8,
|
116 |
-
label=lang,
|
117 |
-
)
|
118 |
-
)
|
119 |
-
legend_elements.append(
|
120 |
-
plt.Line2D(
|
121 |
-
[0],
|
122 |
-
[0],
|
123 |
-
marker="o",
|
124 |
-
color="w",
|
125 |
-
markerfacecolor="lightgray",
|
126 |
-
markersize=8,
|
127 |
-
label="Other",
|
128 |
-
)
|
129 |
-
)
|
130 |
|
131 |
for i, task_y in enumerate(tasks):
|
132 |
for j, task_x in enumerate(tasks):
|
133 |
ax = axes[i, j]
|
134 |
-
|
135 |
if i == j:
|
136 |
# Diagonal: histogram
|
137 |
task_data = pivot_df[task_y].dropna()
|
138 |
colors = [get_color_and_label(lang)[0] for lang in task_data.index]
|
139 |
-
ax.hist(task_data, bins=20, alpha=0.7, color=
|
140 |
-
ax.set_title(f
|
141 |
else:
|
142 |
# Off-diagonal: scatter plot
|
143 |
for lang_code in pivot_df.index:
|
144 |
-
if pd.notna(pivot_df.loc[lang_code, task_x]) and pd.notna(
|
145 |
-
pivot_df.loc[lang_code, task_y]
|
146 |
-
):
|
147 |
color, _ = get_color_and_label(lang_code)
|
148 |
alpha = 0.8 if lang_code in highlighted_languages else 0.3
|
149 |
size = 50 if lang_code in highlighted_languages else 20
|
150 |
-
ax.scatter(
|
151 |
-
|
152 |
-
|
153 |
-
c=color,
|
154 |
-
alpha=alpha,
|
155 |
-
s=size,
|
156 |
-
)
|
157 |
-
|
158 |
# Set labels
|
159 |
if i == n_tasks - 1:
|
160 |
ax.set_xlabel(task_x, fontsize=10)
|
161 |
if j == 0:
|
162 |
ax.set_ylabel(task_y, fontsize=10)
|
163 |
-
|
164 |
# Remove tick labels except for edges
|
165 |
if i != n_tasks - 1:
|
166 |
ax.set_xticklabels([])
|
@@ -170,15 +136,15 @@ for i, task_y in enumerate(tasks):
|
|
170 |
# Add legend
|
171 |
fig.legend(
|
172 |
handles=legend_elements,
|
173 |
-
loc=
|
174 |
bbox_to_anchor=(0.5, -0.05),
|
175 |
ncol=len(legend_elements),
|
176 |
frameon=False,
|
177 |
fontsize=10,
|
178 |
handletextpad=0.5,
|
179 |
-
columnspacing=1.0
|
180 |
)
|
181 |
|
182 |
plt.tight_layout()
|
183 |
-
plt.savefig(
|
184 |
plt.show()
|
|
|
9 |
df = df[df["metric"] != "chrf"]
|
10 |
df = df.groupby(["task", "metric", "bcp_47"]).agg({"score": "mean"}).reset_index()
|
11 |
|
|
|
12 |
# Apply logit transformation to classification scores to reduce skewness
|
13 |
def transform_classification_scores(row):
|
14 |
+
if row['task'] == 'classification':
|
15 |
# Avoid division by zero and infinite values by clipping
|
16 |
+
score = np.clip(row['score'], 0.001, 0.999)
|
17 |
# Apply logit transformation (log(p/(1-p)))
|
18 |
return logit(score)
|
19 |
else:
|
20 |
+
return row['score']
|
|
|
21 |
|
22 |
+
df['score'] = df.apply(transform_classification_scores, axis=1)
|
23 |
|
24 |
# Create a pivot table with tasks as columns and languages as rows
|
25 |
pivot_df = df.pivot_table(
|
26 |
+
values='score',
|
27 |
+
index='bcp_47',
|
28 |
+
columns='task',
|
29 |
+
aggfunc='mean'
|
30 |
)
|
31 |
|
32 |
# Sort and filter tasks
|
33 |
ordered_tasks = [
|
34 |
+
'translation_from',
|
35 |
+
'translation_to',
|
36 |
+
'classification',
|
37 |
+
'mmlu',
|
38 |
+
'arc',
|
39 |
+
'mgsm',
|
40 |
]
|
41 |
# Drop 'truthfulqa' if present and reindex columns
|
42 |
pivot_df = pivot_df[[task for task in ordered_tasks if task in pivot_df.columns]]
|
|
|
46 |
|
47 |
# Create the correlation plot
|
48 |
plt.figure(figsize=(8, 6))
|
49 |
+
# Create mask for upper triangle including diagonal to show only lower triangle
|
50 |
mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))
|
51 |
|
52 |
# Create a heatmap
|
53 |
sns.heatmap(
|
54 |
+
correlation_matrix,
|
55 |
+
annot=True,
|
56 |
+
cmap='Blues',
|
57 |
center=0,
|
58 |
square=True,
|
59 |
mask=mask,
|
60 |
+
cbar_kws={"shrink": .8},
|
61 |
+
fmt='.3f'
|
62 |
)
|
63 |
|
64 |
+
plt.xlabel('Tasks', fontsize=12)
|
65 |
+
plt.ylabel('Tasks', fontsize=12)
|
66 |
+
plt.xticks(rotation=45, ha='right')
|
67 |
plt.yticks(rotation=0)
|
68 |
plt.tight_layout()
|
69 |
|
70 |
# Save the plot
|
71 |
+
plt.savefig('task_correlation_matrix.png', dpi=300, bbox_inches='tight')
|
72 |
plt.show()
|
73 |
|
74 |
# Print correlation values for reference
|
|
|
77 |
print(correlation_matrix.round(3))
|
78 |
|
79 |
# Also create a scatter plot matrix for pairwise relationships with highlighted languages
|
80 |
+
highlighted_languages = ['en', 'zh', 'hi', 'es', 'ar']
|
|
|
81 |
|
82 |
# Create color mapping
|
83 |
def get_color_and_label(lang_code):
|
84 |
if lang_code in highlighted_languages:
|
85 |
+
color_map = {'en': 'red', 'zh': 'blue', 'hi': 'green', 'es': 'orange', 'ar': 'purple'}
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return color_map[lang_code], lang_code
|
87 |
else:
|
88 |
+
return 'lightgray', 'Other'
|
|
|
89 |
|
90 |
# Create custom scatter plot matrix
|
91 |
tasks = pivot_df.columns.tolist()
|
92 |
n_tasks = len(tasks)
|
93 |
|
94 |
fig, axes = plt.subplots(n_tasks, n_tasks, figsize=(15, 12))
|
95 |
+
fig.suptitle('Pairwise Task Performance', fontsize=16, fontweight='bold')
|
96 |
|
97 |
# Create legend elements
|
98 |
legend_elements = []
|
99 |
for lang in highlighted_languages:
|
100 |
color, _ = get_color_and_label(lang)
|
101 |
+
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=8, label=lang))
|
102 |
+
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='lightgray', markersize=8, label='Other'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
for i, task_y in enumerate(tasks):
|
105 |
for j, task_x in enumerate(tasks):
|
106 |
ax = axes[i, j]
|
107 |
+
|
108 |
if i == j:
|
109 |
# Diagonal: histogram
|
110 |
task_data = pivot_df[task_y].dropna()
|
111 |
colors = [get_color_and_label(lang)[0] for lang in task_data.index]
|
112 |
+
ax.hist(task_data, bins=20, alpha=0.7, color='skyblue', edgecolor='black')
|
113 |
+
ax.set_title(f'{task_y}', fontsize=10)
|
114 |
else:
|
115 |
# Off-diagonal: scatter plot
|
116 |
for lang_code in pivot_df.index:
|
117 |
+
if pd.notna(pivot_df.loc[lang_code, task_x]) and pd.notna(pivot_df.loc[lang_code, task_y]):
|
|
|
|
|
118 |
color, _ = get_color_and_label(lang_code)
|
119 |
alpha = 0.8 if lang_code in highlighted_languages else 0.3
|
120 |
size = 50 if lang_code in highlighted_languages else 20
|
121 |
+
ax.scatter(pivot_df.loc[lang_code, task_x], pivot_df.loc[lang_code, task_y],
|
122 |
+
c=color, alpha=alpha, s=size)
|
123 |
+
|
|
|
|
|
|
|
|
|
|
|
124 |
# Set labels
|
125 |
if i == n_tasks - 1:
|
126 |
ax.set_xlabel(task_x, fontsize=10)
|
127 |
if j == 0:
|
128 |
ax.set_ylabel(task_y, fontsize=10)
|
129 |
+
|
130 |
# Remove tick labels except for edges
|
131 |
if i != n_tasks - 1:
|
132 |
ax.set_xticklabels([])
|
|
|
136 |
# Add legend
|
137 |
fig.legend(
|
138 |
handles=legend_elements,
|
139 |
+
loc='lower center',
|
140 |
bbox_to_anchor=(0.5, -0.05),
|
141 |
ncol=len(legend_elements),
|
142 |
frameon=False,
|
143 |
fontsize=10,
|
144 |
handletextpad=0.5,
|
145 |
+
columnspacing=1.0
|
146 |
)
|
147 |
|
148 |
plt.tight_layout()
|
149 |
+
plt.savefig('task_scatter_matrix.png', dpi=300, bbox_inches='tight')
|
150 |
plt.show()
|
evals/tasks.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import asyncio
|
2 |
import random
|
3 |
from functools import partial
|
4 |
from textwrap import dedent
|
@@ -6,10 +5,10 @@ from textwrap import dedent
|
|
6 |
import evaluate
|
7 |
import pandas as pd
|
8 |
import sentencepiece as spm
|
9 |
-
from datasets_.arc import load_uhura_arc_easy
|
10 |
from datasets_.flores import flores_sentences
|
11 |
from datasets_.mgsm import load_mgsm, parse_number
|
12 |
from datasets_.mmlu import load_mmlu
|
|
|
13 |
from datasets_.truthfulqa import load_truthfulqa
|
14 |
from google.cloud import translate_v2 as translate
|
15 |
from langcodes import closest_supported_match
|
@@ -48,7 +47,6 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
48 |
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
|
49 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
50 |
script = script_name(target_language.flores_path.split("_")[1])
|
51 |
-
translation_prompt = f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}"
|
52 |
if model == "google/translate-v2":
|
53 |
original_language = closest_supported_match(
|
54 |
original_language, supported_languages
|
@@ -68,7 +66,7 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
68 |
messages=[
|
69 |
{
|
70 |
"role": "user",
|
71 |
-
"content":
|
72 |
}
|
73 |
],
|
74 |
temperature=0,
|
@@ -93,7 +91,6 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
93 |
"task": f"translation_{mode}",
|
94 |
"metric": metric,
|
95 |
"score": score,
|
96 |
-
"origin": "human", # FLORES+ is human-translated
|
97 |
"sentence_nr": sentence_nr,
|
98 |
}
|
99 |
for metric, score in (
|
@@ -115,33 +112,57 @@ async def classify_and_evaluate(model, bcp_47, nr):
|
|
115 |
)
|
116 |
top_topics = paragraphs.value_counts("topic").head(5).index
|
117 |
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
response = await complete(
|
127 |
-
model=model,
|
128 |
-
messages=[{"role": "user", "content": prompt}],
|
129 |
-
temperature=0,
|
130 |
-
max_tokens=30,
|
131 |
)
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
others = [t for t in top_topics if t != true]
|
136 |
-
acc = (
|
137 |
-
int(
|
138 |
-
pred.startswith(true)
|
139 |
-
or (true in pred and not any(o in pred for o in others))
|
140 |
-
)
|
141 |
-
if pred
|
142 |
-
else 0
|
143 |
-
)
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
return [
|
146 |
{
|
147 |
"model": model,
|
@@ -149,7 +170,6 @@ Text:
|
|
149 |
"task": "classification",
|
150 |
"metric": "accuracy",
|
151 |
"score": acc,
|
152 |
-
"origin": "human", # FLORES+ is human-translated
|
153 |
"sentence_nr": nr,
|
154 |
}
|
155 |
]
|
@@ -212,38 +232,39 @@ def format_multiple_choice(item):
|
|
212 |
A: {item["choices"][0]}
|
213 |
B: {item["choices"][1]}
|
214 |
C: {item["choices"][2]}
|
215 |
-
D: {item["choices"][3]}
|
|
|
|
|
216 |
|
217 |
|
218 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
219 |
-
ds_name,
|
220 |
if not task:
|
221 |
return []
|
222 |
|
223 |
-
messages = [
|
224 |
-
|
225 |
-
|
226 |
-
"
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
return [
|
248 |
{
|
249 |
"model": model,
|
@@ -251,40 +272,39 @@ Response format: <reasoning> #### <letter>
|
|
251 |
"task": "mmlu",
|
252 |
"metric": "accuracy",
|
253 |
"score": acc,
|
254 |
-
"origin": origin, # Add origin tag to results
|
255 |
"sentence_nr": nr,
|
256 |
}
|
257 |
]
|
258 |
|
259 |
|
260 |
async def arc_and_evaluate(model, language_bcp_47, nr):
|
261 |
-
ds_name,
|
262 |
if not task:
|
263 |
return []
|
264 |
|
265 |
-
messages = [
|
266 |
-
|
267 |
-
|
268 |
-
"
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
return [
|
289 |
{
|
290 |
"model": model,
|
@@ -292,7 +312,6 @@ Response format: <reasoning> #### <letter>
|
|
292 |
"task": "arc",
|
293 |
"metric": "accuracy",
|
294 |
"score": acc,
|
295 |
-
"origin": origin,
|
296 |
"sentence_nr": nr,
|
297 |
}
|
298 |
]
|
@@ -313,42 +332,40 @@ def format_multiple_choice_truthfulqa(item):
|
|
313 |
text = item["question"] + "\n\n"
|
314 |
for i, choice in enumerate(item["choices"]):
|
315 |
text += f"{letters[i]}: {choice}\n"
|
|
|
316 |
return text
|
317 |
|
318 |
|
319 |
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
|
320 |
-
ds_name,
|
321 |
if not task:
|
322 |
return []
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
"role": "
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
else:
|
350 |
-
acc = 0
|
351 |
-
|
352 |
return [
|
353 |
{
|
354 |
"model": model,
|
@@ -356,36 +373,30 @@ Response format: <reasoning> #### <letter>
|
|
356 |
"task": "truthfulqa",
|
357 |
"metric": "accuracy",
|
358 |
"score": acc,
|
359 |
-
"origin": origin,
|
360 |
"sentence_nr": nr,
|
361 |
}
|
362 |
]
|
363 |
|
364 |
|
365 |
async def mgsm_and_evaluate(model, language_bcp_47, nr):
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
367 |
if not question:
|
368 |
return []
|
369 |
-
|
370 |
-
messages = [
|
371 |
-
{
|
372 |
-
"role": "user",
|
373 |
-
"content": f"""Solve the following math problem. Reason step-by-step and then write the final answer as a number.
|
374 |
-
|
375 |
-
Response format: <reasoning> #### <number>
|
376 |
-
|
377 |
-
---
|
378 |
-
|
379 |
-
{question["question"]}""",
|
380 |
-
},
|
381 |
-
]
|
382 |
response = await complete(
|
383 |
model=model,
|
384 |
-
messages=
|
|
|
|
|
|
|
385 |
temperature=0,
|
386 |
max_tokens=1024,
|
387 |
)
|
388 |
-
if response and "####"
|
389 |
number = response.split("####")[1].strip()
|
390 |
accuracy = int(parse_number(number) == parse_number(question["answer_number"]))
|
391 |
else:
|
@@ -398,7 +409,6 @@ Response format: <reasoning> #### <number>
|
|
398 |
"task": "mgsm",
|
399 |
"metric": "accuracy",
|
400 |
"score": accuracy,
|
401 |
-
"origin": origin,
|
402 |
"sentence_nr": nr,
|
403 |
}
|
404 |
]
|
@@ -439,8 +449,10 @@ tasks = {
|
|
439 |
"translation_from": partial(translate_and_evaluate, mode="from"),
|
440 |
"translation_to": partial(translate_and_evaluate, mode="to"),
|
441 |
"classification": classify_and_evaluate,
|
|
|
442 |
"mmlu": mmlu_and_evaluate,
|
443 |
"arc": arc_and_evaluate,
|
444 |
"truthfulqa": truthfulqa_and_evaluate,
|
445 |
"mgsm": mgsm_and_evaluate,
|
|
|
446 |
}
|
|
|
|
|
1 |
import random
|
2 |
from functools import partial
|
3 |
from textwrap import dedent
|
|
|
5 |
import evaluate
|
6 |
import pandas as pd
|
7 |
import sentencepiece as spm
|
|
|
8 |
from datasets_.flores import flores_sentences
|
9 |
from datasets_.mgsm import load_mgsm, parse_number
|
10 |
from datasets_.mmlu import load_mmlu
|
11 |
+
from datasets_.arc import load_uhura_arc_easy
|
12 |
from datasets_.truthfulqa import load_truthfulqa
|
13 |
from google.cloud import translate_v2 as translate
|
14 |
from langcodes import closest_supported_match
|
|
|
47 |
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
|
48 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
49 |
script = script_name(target_language.flores_path.split("_")[1])
|
|
|
50 |
if model == "google/translate-v2":
|
51 |
original_language = closest_supported_match(
|
52 |
original_language, supported_languages
|
|
|
66 |
messages=[
|
67 |
{
|
68 |
"role": "user",
|
69 |
+
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
|
70 |
}
|
71 |
],
|
72 |
temperature=0,
|
|
|
91 |
"task": f"translation_{mode}",
|
92 |
"metric": metric,
|
93 |
"score": score,
|
|
|
94 |
"sentence_nr": sentence_nr,
|
95 |
}
|
96 |
for metric, score in (
|
|
|
112 |
)
|
113 |
top_topics = paragraphs.value_counts("topic").head(5).index
|
114 |
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
|
115 |
+
examples = pd.concat(
|
116 |
+
[
|
117 |
+
paragraphs[paragraphs["topic"] == t].sample(n=1, random_state=42)
|
118 |
+
for t in top_topics
|
119 |
+
]
|
120 |
+
).sample(frac=1, random_state=nr)
|
121 |
+
test_paragraphs = paragraphs[~paragraphs["url"].isin(examples["url"])].sample(
|
122 |
+
frac=1, random_state=42
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
124 |
+
test_paragraph = test_paragraphs.iloc[nr]
|
125 |
|
126 |
+
def format_prompt(text):
|
127 |
+
return f"{text}\n\nTopic: {'|'.join(top_topics)}?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
messages = []
|
130 |
+
for example in examples.itertuples():
|
131 |
+
messages += [
|
132 |
+
{"role": "user", "content": format_prompt(example.text)},
|
133 |
+
{"role": "assistant", "content": example.topic},
|
134 |
+
]
|
135 |
+
# some models have poor tokenization for some languages, and the prompt for this task is relatively long, so it sometimes exceeds the context window
|
136 |
+
# this is not just to blame on the context window but mostly on the model's tokenization, so we assign 0 accuracy in this case
|
137 |
+
try:
|
138 |
+
pred = await complete(
|
139 |
+
model=model,
|
140 |
+
messages=[
|
141 |
+
*messages,
|
142 |
+
{
|
143 |
+
"role": "user",
|
144 |
+
"content": format_prompt(test_paragraph.text),
|
145 |
+
},
|
146 |
+
],
|
147 |
+
temperature=0,
|
148 |
+
max_tokens=30,
|
149 |
+
)
|
150 |
+
true = test_paragraph.topic
|
151 |
+
others = [t for t in top_topics if t != true]
|
152 |
+
acc = (
|
153 |
+
int(
|
154 |
+
pred.startswith(true)
|
155 |
+
or (true in pred and not any(o in pred for o in others))
|
156 |
+
)
|
157 |
+
if pred
|
158 |
+
else 0
|
159 |
+
)
|
160 |
+
except Exception as e:
|
161 |
+
if "`inputs` tokens + `max_new_tokens` must be <= 4097" in str(e):
|
162 |
+
print(f"Max tokens exceeded for {model} in {bcp_47}")
|
163 |
+
acc = 0
|
164 |
+
else:
|
165 |
+
raise e
|
166 |
return [
|
167 |
{
|
168 |
"model": model,
|
|
|
170 |
"task": "classification",
|
171 |
"metric": "accuracy",
|
172 |
"score": acc,
|
|
|
173 |
"sentence_nr": nr,
|
174 |
}
|
175 |
]
|
|
|
232 |
A: {item["choices"][0]}
|
233 |
B: {item["choices"][1]}
|
234 |
C: {item["choices"][2]}
|
235 |
+
D: {item["choices"][3]}
|
236 |
+
|
237 |
+
A|B|C|D?"""
|
238 |
|
239 |
|
240 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
241 |
+
ds_name, examples, task = load_mmlu(language_bcp_47, nr)
|
242 |
if not task:
|
243 |
return []
|
244 |
|
245 |
+
messages = []
|
246 |
+
for example in examples:
|
247 |
+
messages += [
|
248 |
+
{"role": "user", "content": format_multiple_choice(example)},
|
249 |
+
{"role": "assistant", "content": example["answer"]},
|
250 |
+
]
|
251 |
+
messages += [{"role": "user", "content": format_multiple_choice(task)}]
|
252 |
+
try:
|
253 |
+
response = await complete(
|
254 |
+
model=model,
|
255 |
+
messages=messages,
|
256 |
+
temperature=0,
|
257 |
+
max_tokens=1,
|
258 |
+
)
|
259 |
+
if response:
|
260 |
+
acc = int(response[:1].strip() == task["answer"])
|
261 |
+
else:
|
262 |
+
acc = 0
|
263 |
+
except Exception as e:
|
264 |
+
if "ResponsibleAIPolicyViolation" in str(e):
|
265 |
+
acc = 0
|
266 |
+
else:
|
267 |
+
raise e
|
|
|
268 |
return [
|
269 |
{
|
270 |
"model": model,
|
|
|
272 |
"task": "mmlu",
|
273 |
"metric": "accuracy",
|
274 |
"score": acc,
|
|
|
275 |
"sentence_nr": nr,
|
276 |
}
|
277 |
]
|
278 |
|
279 |
|
280 |
async def arc_and_evaluate(model, language_bcp_47, nr):
|
281 |
+
ds_name, examples, task = load_uhura_arc_easy(language_bcp_47, nr)
|
282 |
if not task:
|
283 |
return []
|
284 |
|
285 |
+
messages = []
|
286 |
+
for example in examples:
|
287 |
+
messages += [
|
288 |
+
{"role": "user", "content": format_multiple_choice(example)},
|
289 |
+
{"role": "assistant", "content": example["answer"]},
|
290 |
+
]
|
291 |
+
messages += [{"role": "user", "content": format_multiple_choice(task)}]
|
292 |
+
try:
|
293 |
+
response = await complete(
|
294 |
+
model=model,
|
295 |
+
messages=messages,
|
296 |
+
temperature=0,
|
297 |
+
max_tokens=1,
|
298 |
+
)
|
299 |
+
if response:
|
300 |
+
acc = int(response[:1].strip() == task["answer"])
|
301 |
+
else:
|
302 |
+
acc = 0
|
303 |
+
except Exception as e:
|
304 |
+
if "ResponsibleAIPolicyViolation" in str(e):
|
305 |
+
acc = 0
|
306 |
+
else:
|
307 |
+
raise e
|
308 |
return [
|
309 |
{
|
310 |
"model": model,
|
|
|
312 |
"task": "arc",
|
313 |
"metric": "accuracy",
|
314 |
"score": acc,
|
|
|
315 |
"sentence_nr": nr,
|
316 |
}
|
317 |
]
|
|
|
332 |
text = item["question"] + "\n\n"
|
333 |
for i, choice in enumerate(item["choices"]):
|
334 |
text += f"{letters[i]}: {choice}\n"
|
335 |
+
text += "|".join(letters[: len(item["choices"])]) + "?"
|
336 |
return text
|
337 |
|
338 |
|
339 |
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
|
340 |
+
ds_name, examples, task = load_truthfulqa(language_bcp_47, nr)
|
341 |
if not task:
|
342 |
return []
|
343 |
+
task = shuffle_choices_and_labels(task)
|
344 |
+
answer = letters[task["labels"].index(1)]
|
345 |
+
messages = []
|
346 |
+
for example in examples:
|
347 |
+
example = shuffle_choices_and_labels(example)
|
348 |
+
messages += [
|
349 |
+
{"role": "user", "content": format_multiple_choice_truthfulqa(example)},
|
350 |
+
{"role": "assistant", "content": letters[example["labels"].index(1)]},
|
351 |
+
]
|
352 |
+
messages += [{"role": "user", "content": format_multiple_choice_truthfulqa(task)}]
|
353 |
+
try:
|
354 |
+
response = await complete(
|
355 |
+
model=model,
|
356 |
+
messages=messages,
|
357 |
+
temperature=0,
|
358 |
+
max_tokens=1,
|
359 |
+
)
|
360 |
+
if response:
|
361 |
+
acc = int(response[:1].strip() == answer)
|
362 |
+
else:
|
363 |
+
acc = 0
|
364 |
+
except Exception as e:
|
365 |
+
if "ResponsibleAIPolicyViolation" in str(e):
|
366 |
+
acc = 0
|
367 |
+
else:
|
368 |
+
raise e
|
|
|
|
|
|
|
369 |
return [
|
370 |
{
|
371 |
"model": model,
|
|
|
373 |
"task": "truthfulqa",
|
374 |
"metric": "accuracy",
|
375 |
"score": acc,
|
|
|
376 |
"sentence_nr": nr,
|
377 |
}
|
378 |
]
|
379 |
|
380 |
|
381 |
async def mgsm_and_evaluate(model, language_bcp_47, nr):
|
382 |
+
system_prompt = """
|
383 |
+
Solve the math problem. Use reasoning, and finally give the answer as a number.
|
384 |
+
Response format: <reasoning> #### <number>
|
385 |
+
"""
|
386 |
+
system_prompt = dedent(system_prompt).strip()
|
387 |
+
ds_slug, question = load_mgsm(language_bcp_47, nr)
|
388 |
if not question:
|
389 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
response = await complete(
|
391 |
model=model,
|
392 |
+
messages=[
|
393 |
+
{"role": "system", "content": system_prompt},
|
394 |
+
{"role": "user", "content": question["question"]},
|
395 |
+
],
|
396 |
temperature=0,
|
397 |
max_tokens=1024,
|
398 |
)
|
399 |
+
if response and len(response.split("####")) == 2:
|
400 |
number = response.split("####")[1].strip()
|
401 |
accuracy = int(parse_number(number) == parse_number(question["answer_number"]))
|
402 |
else:
|
|
|
409 |
"task": "mgsm",
|
410 |
"metric": "accuracy",
|
411 |
"score": accuracy,
|
|
|
412 |
"sentence_nr": nr,
|
413 |
}
|
414 |
]
|
|
|
449 |
"translation_from": partial(translate_and_evaluate, mode="from"),
|
450 |
"translation_to": partial(translate_and_evaluate, mode="to"),
|
451 |
"classification": classify_and_evaluate,
|
452 |
+
# "mlm": mlm_and_evaluate,
|
453 |
"mmlu": mmlu_and_evaluate,
|
454 |
"arc": arc_and_evaluate,
|
455 |
"truthfulqa": truthfulqa_and_evaluate,
|
456 |
"mgsm": mgsm_and_evaluate,
|
457 |
+
# "asr": transcribe_and_evaluate,
|
458 |
}
|
evals/translate.py
CHANGED
@@ -6,4 +6,4 @@ from datasets_.mmlu import translate_mmlu
|
|
6 |
if __name__ == "__main__":
|
7 |
translate_mmlu(languages)
|
8 |
translate_mgsm(languages)
|
9 |
-
translate_arc(languages)
|
|
|
6 |
if __name__ == "__main__":
|
7 |
translate_mmlu(languages)
|
8 |
translate_mgsm(languages)
|
9 |
+
translate_arc(languages)
|
frontend/package-lock.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
frontend/package.json
CHANGED
@@ -6,12 +6,13 @@
|
|
6 |
"@observablehq/plot": "^0.6.17",
|
7 |
"@testing-library/dom": "^10.4.0",
|
8 |
"@testing-library/jest-dom": "^6.6.3",
|
9 |
-
"@testing-library/react": "^
|
10 |
"@testing-library/user-event": "^13.5.0",
|
11 |
"primeicons": "^7.0.0",
|
12 |
"primereact": "^10.9.3",
|
13 |
-
"react": "^
|
14 |
-
"react-dom": "^
|
|
|
15 |
"topojson-simplify": "^3.0.3",
|
16 |
"web-vitals": "^2.1.4"
|
17 |
},
|
@@ -40,8 +41,5 @@
|
|
40 |
"last 1 safari version"
|
41 |
]
|
42 |
},
|
43 |
-
"proxy": "http://localhost:8000"
|
44 |
-
"devDependencies": {
|
45 |
-
"react-scripts": "^5.0.1"
|
46 |
-
}
|
47 |
}
|
|
|
6 |
"@observablehq/plot": "^0.6.17",
|
7 |
"@testing-library/dom": "^10.4.0",
|
8 |
"@testing-library/jest-dom": "^6.6.3",
|
9 |
+
"@testing-library/react": "^16.2.0",
|
10 |
"@testing-library/user-event": "^13.5.0",
|
11 |
"primeicons": "^7.0.0",
|
12 |
"primereact": "^10.9.3",
|
13 |
+
"react": "^19.0.0",
|
14 |
+
"react-dom": "^19.0.0",
|
15 |
+
"react-scripts": "5.0.1",
|
16 |
"topojson-simplify": "^3.0.3",
|
17 |
"web-vitals": "^2.1.4"
|
18 |
},
|
|
|
41 |
"last 1 safari version"
|
42 |
]
|
43 |
},
|
44 |
+
"proxy": "http://localhost:8000"
|
|
|
|
|
|
|
45 |
}
|
frontend/src/App.js
CHANGED
@@ -19,14 +19,9 @@ function App () {
|
|
19 |
const [loading, setLoading] = useState(true)
|
20 |
const [error, setError] = useState(null)
|
21 |
const [selectedLanguages, setSelectedLanguages] = useState([])
|
22 |
-
const [machineTranslatedMetrics, setMachineTranslatedMetrics] = useState([])
|
23 |
const [dialogVisible, setDialogVisible] = useState(false)
|
24 |
const [aboutVisible, setAboutVisible] = useState(false)
|
25 |
const [contributeVisible, setContributeVisible] = useState(false)
|
26 |
-
|
27 |
-
// Add state for carousel items
|
28 |
-
const [carouselItems, setCarouselItems] = useState([])
|
29 |
-
const [fullScreenCarouselItems, setFullScreenCarouselItems] = useState([])
|
30 |
|
31 |
useEffect(() => {
|
32 |
fetch('/api/data', {
|
@@ -41,7 +36,6 @@ function App () {
|
|
41 |
})
|
42 |
.then(jsonData => {
|
43 |
setData(jsonData)
|
44 |
-
setMachineTranslatedMetrics(jsonData.machine_translated_metrics || [])
|
45 |
setLoading(false)
|
46 |
})
|
47 |
.catch(err => {
|
@@ -50,27 +44,8 @@ function App () {
|
|
50 |
})
|
51 |
}, [selectedLanguages])
|
52 |
|
53 |
-
// Create carousel items when data is loaded
|
54 |
-
useEffect(() => {
|
55 |
-
if (data) {
|
56 |
-
// Add a small delay to ensure components are ready
|
57 |
-
const timer = setTimeout(() => {
|
58 |
-
setCarouselItems([
|
59 |
-
<WorldMap key="worldmap-0" data={data.countries} allLanguages={data.language_table} width={750} height={500} />,
|
60 |
-
<LanguagePlot key="langplot-1" data={data} width={750} height={500} />,
|
61 |
-
<SpeakerPlot key="speakerplot-2" data={data} width={750} height={500} />,
|
62 |
-
<HistoryPlot key="histplot-3" data={data} width={750} height={500} />,
|
63 |
-
<CostPlot key="costplot-4" data={data} width={750} height={500} />
|
64 |
-
]);
|
65 |
-
}, 100);
|
66 |
-
|
67 |
-
return () => clearTimeout(timer);
|
68 |
-
}
|
69 |
-
}, [data])
|
70 |
-
|
71 |
const [windowWidth, setWindowWidth] = useState(window.innerWidth)
|
72 |
const [windowHeight, setWindowHeight] = useState(window.innerHeight)
|
73 |
-
|
74 |
useEffect(() => {
|
75 |
const handleResize = () => {
|
76 |
setWindowWidth(window.innerWidth)
|
@@ -80,44 +55,6 @@ function App () {
|
|
80 |
return () => window.removeEventListener('resize', handleResize)
|
81 |
}, [])
|
82 |
|
83 |
-
// Create full-screen carousel items when data or window size changes
|
84 |
-
useEffect(() => {
|
85 |
-
if (data) {
|
86 |
-
const timer = setTimeout(() => {
|
87 |
-
setFullScreenCarouselItems([
|
88 |
-
<WorldMap
|
89 |
-
key="fs-worldmap-0"
|
90 |
-
data={data.countries}
|
91 |
-
allLanguages={data.language_table}
|
92 |
-
width={windowWidth * 0.7}
|
93 |
-
height={windowHeight * 0.6}
|
94 |
-
/>,
|
95 |
-
<LanguagePlot
|
96 |
-
key="fs-langplot-1"
|
97 |
-
data={data}
|
98 |
-
width={windowWidth * 0.7}
|
99 |
-
height={windowHeight * 0.6}
|
100 |
-
/>,
|
101 |
-
<SpeakerPlot
|
102 |
-
key="fs-speakerplot-2"
|
103 |
-
data={data}
|
104 |
-
width={windowWidth * 0.7}
|
105 |
-
height={windowHeight * 0.6}
|
106 |
-
/>,
|
107 |
-
<HistoryPlot
|
108 |
-
key="fs-histplot-3"
|
109 |
-
data={data}
|
110 |
-
width={windowWidth * 0.7}
|
111 |
-
height={windowHeight * 0.6}
|
112 |
-
/>,
|
113 |
-
<CostPlot key="fs-costplot-4" data={data} width={windowWidth * 0.7} height={windowHeight * 0.6} />
|
114 |
-
]);
|
115 |
-
}, 100);
|
116 |
-
|
117 |
-
return () => clearTimeout(timer);
|
118 |
-
}
|
119 |
-
}, [data, windowWidth, windowHeight])
|
120 |
-
|
121 |
return (
|
122 |
<PrimeReactProvider>
|
123 |
<div
|
@@ -132,50 +69,35 @@ function App () {
|
|
132 |
style={{
|
133 |
backgroundColor: '#fff3cd',
|
134 |
color: '#856404',
|
135 |
-
padding: '
|
136 |
marginBottom: '1rem',
|
137 |
border: '1px solid #ffeeba',
|
138 |
borderRadius: '0.25rem',
|
139 |
-
textAlign: 'center'
|
140 |
-
lineHeight: '1.5',
|
141 |
-
position: 'relative'
|
142 |
}}
|
143 |
>
|
144 |
<strong>Work in Progress:</strong> This dashboard is currently under
|
145 |
-
active development. Evaluation results are not yet final.
|
146 |
-
</div>
|
147 |
-
<div
|
148 |
-
style={{
|
149 |
-
display: 'flex',
|
150 |
-
justifyContent: 'flex-end',
|
151 |
-
padding: '0 1.5rem',
|
152 |
-
marginBottom: '1rem'
|
153 |
-
}}
|
154 |
-
>
|
155 |
<a
|
156 |
href='https://github.com/datenlabor-bmz/ai-language-monitor'
|
157 |
target='_blank'
|
158 |
rel='noopener noreferrer'
|
159 |
style={{
|
160 |
textDecoration: 'none',
|
161 |
-
color: '#
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
display: 'flex',
|
169 |
-
alignItems: 'center',
|
170 |
-
gap: '0.5rem',
|
171 |
-
transition: 'all 0.2s ease',
|
172 |
-
':hover': {
|
173 |
-
backgroundColor: '#e9ecef',
|
174 |
-
color: '#495057'
|
175 |
-
}
|
176 |
}}
|
177 |
>
|
178 |
-
<i
|
|
|
|
|
|
|
|
|
179 |
GitHub
|
180 |
</a>
|
181 |
</div>
|
@@ -227,88 +149,39 @@ function App () {
|
|
227 |
<div
|
228 |
style={{
|
229 |
display: 'flex',
|
230 |
-
gap: '
|
231 |
-
marginBottom: '
|
232 |
flexWrap: 'wrap',
|
233 |
justifyContent: 'center'
|
234 |
}}
|
235 |
>
|
236 |
-
<
|
|
|
|
|
237 |
onClick={() => setAboutVisible(true)}
|
238 |
style={{
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
fontSize: '0.95rem',
|
245 |
-
fontWeight: '500',
|
246 |
-
cursor: 'pointer',
|
247 |
-
display: 'flex',
|
248 |
-
alignItems: 'center',
|
249 |
-
gap: '0.5rem',
|
250 |
-
boxShadow: '0 4px 15px rgba(102, 126, 234, 0.25)',
|
251 |
-
transition: 'all 0.3s ease',
|
252 |
-
':hover': {
|
253 |
-
transform: 'translateY(-2px)',
|
254 |
-
boxShadow: '0 8px 25px rgba(102, 126, 234, 0.35)'
|
255 |
-
}
|
256 |
-
}}
|
257 |
-
onMouseEnter={(e) => {
|
258 |
-
e.target.style.transform = 'translateY(-2px)';
|
259 |
-
e.target.style.boxShadow = '0 8px 25px rgba(102, 126, 234, 0.35)';
|
260 |
}}
|
261 |
-
|
262 |
-
e.target.style.transform = 'translateY(0)';
|
263 |
-
e.target.style.boxShadow = '0 4px 15px rgba(102, 126, 234, 0.25)';
|
264 |
-
}}
|
265 |
-
>
|
266 |
-
<span style={{ fontSize: '1.1rem' }}>📚</span>
|
267 |
-
About this tool
|
268 |
-
</button>
|
269 |
|
270 |
-
<
|
|
|
|
|
271 |
onClick={() => setContributeVisible(true)}
|
272 |
-
|
|
|
273 |
style={{
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
fontSize: '0.95rem',
|
280 |
-
fontWeight: '500',
|
281 |
-
cursor: 'pointer',
|
282 |
-
display: 'flex',
|
283 |
-
alignItems: 'center',
|
284 |
-
gap: '0.5rem',
|
285 |
-
boxShadow: '0 4px 15px rgba(255, 154, 158, 0.25)',
|
286 |
-
transition: 'all 0.3s ease',
|
287 |
-
position: 'relative',
|
288 |
-
overflow: 'hidden'
|
289 |
}}
|
290 |
-
|
291 |
-
e.target.style.transform = 'translateY(-2px)';
|
292 |
-
e.target.style.boxShadow = '0 8px 25px rgba(255, 154, 158, 0.35)';
|
293 |
-
}}
|
294 |
-
onMouseLeave={(e) => {
|
295 |
-
e.target.style.transform = 'translateY(0)';
|
296 |
-
e.target.style.boxShadow = '0 4px 15px rgba(255, 154, 158, 0.25)';
|
297 |
-
}}
|
298 |
-
>
|
299 |
-
<span style={{ fontSize: '1.1rem' }}>🚀</span>
|
300 |
-
Add your model
|
301 |
-
<span style={{
|
302 |
-
fontSize: '0.75rem',
|
303 |
-
backgroundColor: 'rgba(107, 70, 193, 0.15)',
|
304 |
-
padding: '0.2rem 0.5rem',
|
305 |
-
borderRadius: '6px',
|
306 |
-
marginLeft: '0.5rem',
|
307 |
-
fontWeight: '600'
|
308 |
-
}}>
|
309 |
-
soon
|
310 |
-
</span>
|
311 |
-
</button>
|
312 |
</div>
|
313 |
|
314 |
{data && (
|
@@ -347,7 +220,6 @@ function App () {
|
|
347 |
data={data.model_table}
|
348 |
selectedLanguages={selectedLanguages}
|
349 |
allLanguages={data.language_table || []}
|
350 |
-
machineTranslatedMetrics={machineTranslatedMetrics}
|
351 |
/>
|
352 |
<LanguageTable
|
353 |
data={data.language_table}
|
@@ -376,18 +248,20 @@ function App () {
|
|
376 |
color: '#666'
|
377 |
}}
|
378 |
/>
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
|
|
|
|
391 |
</div>
|
392 |
</>
|
393 |
)}
|
@@ -535,16 +409,36 @@ function App () {
|
|
535 |
modal
|
536 |
header={null}
|
537 |
>
|
538 |
-
{
|
539 |
<div style={{ width: '100%', height: '100%' }}>
|
540 |
<Carousel
|
541 |
-
|
542 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
numScroll={1}
|
544 |
numVisible={1}
|
545 |
itemTemplate={item => item}
|
546 |
-
circular
|
547 |
-
activeIndex={0}
|
548 |
style={{ width: '100%', height: 'calc(90vh - 120px)' }}
|
549 |
/>
|
550 |
</div>
|
@@ -555,4 +449,4 @@ function App () {
|
|
555 |
)
|
556 |
}
|
557 |
|
558 |
-
export default App
|
|
|
19 |
const [loading, setLoading] = useState(true)
|
20 |
const [error, setError] = useState(null)
|
21 |
const [selectedLanguages, setSelectedLanguages] = useState([])
|
|
|
22 |
const [dialogVisible, setDialogVisible] = useState(false)
|
23 |
const [aboutVisible, setAboutVisible] = useState(false)
|
24 |
const [contributeVisible, setContributeVisible] = useState(false)
|
|
|
|
|
|
|
|
|
25 |
|
26 |
useEffect(() => {
|
27 |
fetch('/api/data', {
|
|
|
36 |
})
|
37 |
.then(jsonData => {
|
38 |
setData(jsonData)
|
|
|
39 |
setLoading(false)
|
40 |
})
|
41 |
.catch(err => {
|
|
|
44 |
})
|
45 |
}, [selectedLanguages])
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
const [windowWidth, setWindowWidth] = useState(window.innerWidth)
|
48 |
const [windowHeight, setWindowHeight] = useState(window.innerHeight)
|
|
|
49 |
useEffect(() => {
|
50 |
const handleResize = () => {
|
51 |
setWindowWidth(window.innerWidth)
|
|
|
55 |
return () => window.removeEventListener('resize', handleResize)
|
56 |
}, [])
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return (
|
59 |
<PrimeReactProvider>
|
60 |
<div
|
|
|
69 |
style={{
|
70 |
backgroundColor: '#fff3cd',
|
71 |
color: '#856404',
|
72 |
+
padding: '0.75rem 1.25rem',
|
73 |
marginBottom: '1rem',
|
74 |
border: '1px solid #ffeeba',
|
75 |
borderRadius: '0.25rem',
|
76 |
+
textAlign: 'center'
|
|
|
|
|
77 |
}}
|
78 |
>
|
79 |
<strong>Work in Progress:</strong> This dashboard is currently under
|
80 |
+
active development. Evaluation results are not yet final.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
<a
|
82 |
href='https://github.com/datenlabor-bmz/ai-language-monitor'
|
83 |
target='_blank'
|
84 |
rel='noopener noreferrer'
|
85 |
style={{
|
86 |
textDecoration: 'none',
|
87 |
+
color: '#856404',
|
88 |
+
float: 'right',
|
89 |
+
fontSize: '1.2rem',
|
90 |
+
fontWeight: 'bold',
|
91 |
+
padding: '0 0.5rem',
|
92 |
+
borderRadius: '3px',
|
93 |
+
backgroundColor: 'rgba(255,255,255,0.3)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}}
|
95 |
>
|
96 |
+
<i
|
97 |
+
className='pi pi-github'
|
98 |
+
title='View on GitHub'
|
99 |
+
style={{ marginRight: '0.3rem' }}
|
100 |
+
/>
|
101 |
GitHub
|
102 |
</a>
|
103 |
</div>
|
|
|
149 |
<div
|
150 |
style={{
|
151 |
display: 'flex',
|
152 |
+
gap: '1rem',
|
153 |
+
marginBottom: '1.5rem',
|
154 |
flexWrap: 'wrap',
|
155 |
justifyContent: 'center'
|
156 |
}}
|
157 |
>
|
158 |
+
<Button
|
159 |
+
label='📚 About this tool'
|
160 |
+
className='p-button-text'
|
161 |
onClick={() => setAboutVisible(true)}
|
162 |
style={{
|
163 |
+
color: '#666',
|
164 |
+
border: '1px solid #ddd',
|
165 |
+
padding: '0.5rem 1rem',
|
166 |
+
borderRadius: '4px',
|
167 |
+
fontSize: '0.9rem'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
}}
|
169 |
+
/>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
<Button
|
172 |
+
label='🚀 Add your model (soon)'
|
173 |
+
className='p-button-text'
|
174 |
onClick={() => setContributeVisible(true)}
|
175 |
+
tooltip='This feature is on our roadmap and will be available soon.'
|
176 |
+
tooltipOptions={{ position: 'bottom' }}
|
177 |
style={{
|
178 |
+
color: '#666',
|
179 |
+
border: '1px solid #ddd',
|
180 |
+
padding: '0.5rem 1rem',
|
181 |
+
borderRadius: '4px',
|
182 |
+
fontSize: '0.9rem'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
}}
|
184 |
+
/>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
</div>
|
186 |
|
187 |
{data && (
|
|
|
220 |
data={data.model_table}
|
221 |
selectedLanguages={selectedLanguages}
|
222 |
allLanguages={data.language_table || []}
|
|
|
223 |
/>
|
224 |
<LanguageTable
|
225 |
data={data.language_table}
|
|
|
248 |
color: '#666'
|
249 |
}}
|
250 |
/>
|
251 |
+
<Carousel
|
252 |
+
value={[
|
253 |
+
<WorldMap data={data.countries} />,
|
254 |
+
<LanguagePlot data={data} />,
|
255 |
+
<SpeakerPlot data={data} />,
|
256 |
+
<HistoryPlot data={data} />,
|
257 |
+
<CostPlot data={data} />
|
258 |
+
]}
|
259 |
+
numScroll={1}
|
260 |
+
numVisible={1}
|
261 |
+
itemTemplate={item => item}
|
262 |
+
circular
|
263 |
+
style={{ width: '100%', minHeight: '650px' }}
|
264 |
+
/>
|
265 |
</div>
|
266 |
</>
|
267 |
)}
|
|
|
409 |
modal
|
410 |
header={null}
|
411 |
>
|
412 |
+
{data && (
|
413 |
<div style={{ width: '100%', height: '100%' }}>
|
414 |
<Carousel
|
415 |
+
value={[
|
416 |
+
<WorldMap
|
417 |
+
data={data.countries}
|
418 |
+
width={windowWidth * 0.7}
|
419 |
+
height={windowHeight * 0.6}
|
420 |
+
/>,
|
421 |
+
<LanguagePlot
|
422 |
+
data={data}
|
423 |
+
width={windowWidth * 0.7}
|
424 |
+
height={windowHeight * 0.6}
|
425 |
+
/>,
|
426 |
+
<SpeakerPlot
|
427 |
+
data={data}
|
428 |
+
width={windowWidth * 0.7}
|
429 |
+
height={windowHeight * 0.6}
|
430 |
+
/>,
|
431 |
+
<HistoryPlot
|
432 |
+
data={data}
|
433 |
+
width={windowWidth * 0.7}
|
434 |
+
height={windowHeight * 0.6}
|
435 |
+
/>,
|
436 |
+
<CostPlot data={data} />
|
437 |
+
]}
|
438 |
numScroll={1}
|
439 |
numVisible={1}
|
440 |
itemTemplate={item => item}
|
441 |
+
circular
|
|
|
442 |
style={{ width: '100%', height: 'calc(90vh - 120px)' }}
|
443 |
/>
|
444 |
</div>
|
|
|
449 |
)
|
450 |
}
|
451 |
|
452 |
+
export default App
|
frontend/src/components/HistoryPlot.js
CHANGED
@@ -50,12 +50,12 @@ const HistoryPlot = ({ data, width = 750, height = 500 }) => {
|
|
50 |
...models.filter(d => d.newRecord),
|
51 |
{
|
52 |
creation_date: new Date(),
|
53 |
-
maxAverage: models[models.length - 1]
|
54 |
}
|
55 |
],
|
56 |
{
|
57 |
x: d => d.creation_date,
|
58 |
-
y: d => d.maxAverage
|
59 |
curve: 'step-after',
|
60 |
strokeOpacity: 0.3
|
61 |
}
|
|
|
50 |
...models.filter(d => d.newRecord),
|
51 |
{
|
52 |
creation_date: new Date(),
|
53 |
+
maxAverage: models[models.length - 1].maxAverage
|
54 |
}
|
55 |
],
|
56 |
{
|
57 |
x: d => d.creation_date,
|
58 |
+
y: d => d.maxAverage,
|
59 |
curve: 'step-after',
|
60 |
strokeOpacity: 0.3
|
61 |
}
|
frontend/src/components/LanguageTable.js
CHANGED
@@ -172,7 +172,7 @@ const LanguageTable = ({ data, selectedLanguages, setSelectedLanguages, totalMod
|
|
172 |
filterElement={familyRowFilterTemplate}
|
173 |
style={{ minWidth: '10rem' }}
|
174 |
/>
|
175 |
-
{ScoreColumns
|
176 |
</DataTable>
|
177 |
)
|
178 |
}
|
|
|
172 |
filterElement={familyRowFilterTemplate}
|
173 |
style={{ minWidth: '10rem' }}
|
174 |
/>
|
175 |
+
{ScoreColumns}
|
176 |
</DataTable>
|
177 |
)
|
178 |
}
|
frontend/src/components/ModelTable.js
CHANGED
@@ -6,7 +6,7 @@ import { useState, useEffect } from 'react'
|
|
6 |
import Medal from './Medal'
|
7 |
import { Slider } from 'primereact/slider'
|
8 |
import ScoreColumns from './ScoreColumns'
|
9 |
-
const ModelTable = ({ data, selectedLanguages = [], allLanguages = []
|
10 |
const [filters, setFilters] = useState({
|
11 |
type: { value: null, matchMode: FilterMatchMode.IN },
|
12 |
size: { value: null, matchMode: FilterMatchMode.BETWEEN },
|
@@ -50,10 +50,10 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [], machineTr
|
|
50 |
}
|
51 |
|
52 |
const SliderWithLabel = ({ value, onChange, min, max }) => {
|
53 |
-
const p = 10
|
54 |
-
const start = value === null
|
55 |
-
const stop = value === null
|
56 |
-
const [_value, _setValue] = useState([start, stop])
|
57 |
useEffect(() => {
|
58 |
const timer = setTimeout(() => {
|
59 |
onChange({
|
@@ -61,11 +61,11 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [], machineTr
|
|
61 |
// set to "no filter" when (almost) the whole range is selected
|
62 |
_value[0] <= min + 0.1 && _value[1] >= max - 0.1
|
63 |
? null
|
64 |
-
: [p ** _value[0], p ** _value[1]]
|
65 |
-
})
|
66 |
-
}, 1000)
|
67 |
-
return () => clearTimeout(timer)
|
68 |
-
}, [_value, onChange, min, max])
|
69 |
return (
|
70 |
<div style={{ minWidth: '20rem' }}>
|
71 |
<div>{formatSize(p ** _value[0])}</div>
|
@@ -147,35 +147,21 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [], machineTr
|
|
147 |
}
|
148 |
|
149 |
const costBodyTemplate = rowData => {
|
150 |
-
return (
|
151 |
-
<div style={{ textAlign: 'center' }}>
|
152 |
-
{rowData.cost === null ? 'n/a' : `$${rowData.cost.toFixed(2)}`}
|
153 |
-
</div>
|
154 |
-
)
|
155 |
}
|
156 |
|
157 |
const getHeaderText = () => {
|
158 |
-
// Count languages that have
|
159 |
-
const evaluatedLanguagesCount = allLanguages.filter(lang =>
|
160 |
-
|
161 |
-
|
162 |
-
'translation_from_bleu',
|
163 |
-
'translation_to_bleu',
|
164 |
-
'classification_accuracy',
|
165 |
-
'mmlu_accuracy',
|
166 |
-
'arc_accuracy',
|
167 |
-
'truthfulqa_accuracy',
|
168 |
-
'mgsm_accuracy'
|
169 |
-
].some(metric => lang[metric] !== null && lang[metric] !== undefined)
|
170 |
-
return hasAnyScores
|
171 |
-
}).length
|
172 |
|
173 |
if (selectedLanguages.length === 0) {
|
174 |
return (
|
175 |
<span>
|
176 |
<span style={{ fontWeight: 'bold', fontSize: '1.1em' }}>AI Models</span>
|
177 |
<span style={{ fontSize: '0.85em', marginLeft: '0.5rem' }}>
|
178 |
-
|
179 |
</span>
|
180 |
</span>
|
181 |
)
|
@@ -259,7 +245,7 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [], machineTr
|
|
259 |
body={costBodyTemplate}
|
260 |
style={{ minWidth: '5rem' }}
|
261 |
/>
|
262 |
-
{ScoreColumns
|
263 |
</DataTable>
|
264 |
)
|
265 |
}
|
|
|
6 |
import Medal from './Medal'
|
7 |
import { Slider } from 'primereact/slider'
|
8 |
import ScoreColumns from './ScoreColumns'
|
9 |
+
const ModelTable = ({ data, selectedLanguages = [], allLanguages = [] }) => {
|
10 |
const [filters, setFilters] = useState({
|
11 |
type: { value: null, matchMode: FilterMatchMode.IN },
|
12 |
size: { value: null, matchMode: FilterMatchMode.BETWEEN },
|
|
|
50 |
}
|
51 |
|
52 |
const SliderWithLabel = ({ value, onChange, min, max }) => {
|
53 |
+
const p = 10
|
54 |
+
const start = value === null ? min : Math.log(value[0]) / Math.log(p)
|
55 |
+
const stop = value === null ? max : Math.log(value[1]) / Math.log(p)
|
56 |
+
const [_value, _setValue] = useState([start, stop])
|
57 |
useEffect(() => {
|
58 |
const timer = setTimeout(() => {
|
59 |
onChange({
|
|
|
61 |
// set to "no filter" when (almost) the whole range is selected
|
62 |
_value[0] <= min + 0.1 && _value[1] >= max - 0.1
|
63 |
? null
|
64 |
+
: [p ** _value[0], p ** _value[1]]
|
65 |
+
})
|
66 |
+
}, 1000)
|
67 |
+
return () => clearTimeout(timer)
|
68 |
+
}, [_value, onChange, min, max])
|
69 |
return (
|
70 |
<div style={{ minWidth: '20rem' }}>
|
71 |
<div>{formatSize(p ** _value[0])}</div>
|
|
|
147 |
}
|
148 |
|
149 |
const costBodyTemplate = rowData => {
|
150 |
+
return <div style={{ textAlign: 'center' }}>${rowData.cost?.toFixed(2)}</div>
|
|
|
|
|
|
|
|
|
151 |
}
|
152 |
|
153 |
const getHeaderText = () => {
|
154 |
+
// Count languages that have evaluation data (average score available)
|
155 |
+
const evaluatedLanguagesCount = allLanguages.filter(lang =>
|
156 |
+
lang.average !== null && lang.average !== undefined
|
157 |
+
).length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
if (selectedLanguages.length === 0) {
|
160 |
return (
|
161 |
<span>
|
162 |
<span style={{ fontWeight: 'bold', fontSize: '1.1em' }}>AI Models</span>
|
163 |
<span style={{ fontSize: '0.85em', marginLeft: '0.5rem' }}>
|
164 |
+
Average performance across {evaluatedLanguagesCount} evaluated languages
|
165 |
</span>
|
166 |
</span>
|
167 |
)
|
|
|
245 |
body={costBodyTemplate}
|
246 |
style={{ minWidth: '5rem' }}
|
247 |
/>
|
248 |
+
{ScoreColumns}
|
249 |
</DataTable>
|
250 |
)
|
251 |
}
|
frontend/src/components/ScoreColumns.js
CHANGED
@@ -2,28 +2,21 @@ import { Column } from 'primereact/column'
|
|
2 |
import ScoreField from './ScoreField'
|
3 |
|
4 |
const scoreBodyTemplate = (field, options = {}) => {
|
5 |
-
const { minScore = 0, maxScore = 1
|
6 |
|
7 |
return rowData => {
|
8 |
const score = rowData[field]
|
9 |
-
|
10 |
-
// otherwise fall back to global list
|
11 |
-
const rowFlagKey = `${field}_is_machine`
|
12 |
-
const hasRowFlag = Object.prototype.hasOwnProperty.call(rowData, rowFlagKey)
|
13 |
-
const isMachineTranslated = hasRowFlag
|
14 |
-
? !!rowData[rowFlagKey]
|
15 |
-
: machineTranslatedMetrics.includes(field)
|
16 |
-
return ScoreField(score, minScore, maxScore, isMachineTranslated)
|
17 |
}
|
18 |
}
|
19 |
|
20 |
-
const ScoreColumns =
|
21 |
<Column
|
22 |
field='average'
|
23 |
header='Proficiency'
|
24 |
headerTooltip='Language Proficiency Score (average of the scores for each task, after min-max normalization)'
|
25 |
sortable
|
26 |
-
body={scoreBodyTemplate('average', { minScore: 0.2, maxScore: 0.5
|
27 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
28 |
/>,
|
29 |
<Column
|
@@ -33,8 +26,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
33 |
sortable
|
34 |
body={scoreBodyTemplate('translation_from_bleu', {
|
35 |
minScore: 0,
|
36 |
-
maxScore: 0.5
|
37 |
-
machineTranslatedMetrics
|
38 |
})}
|
39 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
40 |
/>,
|
@@ -45,8 +37,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
45 |
sortable
|
46 |
body={scoreBodyTemplate('translation_to_bleu', {
|
47 |
minScore: 0,
|
48 |
-
maxScore: 0.5
|
49 |
-
machineTranslatedMetrics
|
50 |
})}
|
51 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
52 |
/>,
|
@@ -57,8 +48,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
57 |
sortable
|
58 |
body={scoreBodyTemplate('classification_accuracy', {
|
59 |
minScore: 0,
|
60 |
-
maxScore: 0.5
|
61 |
-
machineTranslatedMetrics
|
62 |
})}
|
63 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
64 |
/>,
|
@@ -79,8 +69,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
79 |
sortable
|
80 |
body={scoreBodyTemplate('mmlu_accuracy', {
|
81 |
minScore: 0,
|
82 |
-
maxScore: 1
|
83 |
-
machineTranslatedMetrics
|
84 |
})}
|
85 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
86 |
/>,
|
@@ -91,8 +80,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
91 |
sortable
|
92 |
body={scoreBodyTemplate('arc_accuracy', {
|
93 |
minScore: 0,
|
94 |
-
maxScore: 1
|
95 |
-
machineTranslatedMetrics
|
96 |
})}
|
97 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
98 |
/>,
|
@@ -103,8 +91,7 @@ const ScoreColumns = (machineTranslatedMetrics = []) => [
|
|
103 |
sortable
|
104 |
body={scoreBodyTemplate('mgsm_accuracy', {
|
105 |
minScore: 0,
|
106 |
-
maxScore: 1
|
107 |
-
machineTranslatedMetrics
|
108 |
})}
|
109 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
110 |
/>,
|
|
|
2 |
import ScoreField from './ScoreField'
|
3 |
|
4 |
const scoreBodyTemplate = (field, options = {}) => {
|
5 |
+
const { minScore = 0, maxScore = 1 } = options
|
6 |
|
7 |
return rowData => {
|
8 |
const score = rowData[field]
|
9 |
+
return ScoreField(score, minScore, maxScore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
}
|
11 |
}
|
12 |
|
13 |
+
const ScoreColumns = [
|
14 |
<Column
|
15 |
field='average'
|
16 |
header='Proficiency'
|
17 |
headerTooltip='Language Proficiency Score (average of the scores for each task, after min-max normalization)'
|
18 |
sortable
|
19 |
+
body={scoreBodyTemplate('average', { minScore: 0.2, maxScore: 0.5 })}
|
20 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
21 |
/>,
|
22 |
<Column
|
|
|
26 |
sortable
|
27 |
body={scoreBodyTemplate('translation_from_bleu', {
|
28 |
minScore: 0,
|
29 |
+
maxScore: 0.5
|
|
|
30 |
})}
|
31 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
32 |
/>,
|
|
|
37 |
sortable
|
38 |
body={scoreBodyTemplate('translation_to_bleu', {
|
39 |
minScore: 0,
|
40 |
+
maxScore: 0.5
|
|
|
41 |
})}
|
42 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
43 |
/>,
|
|
|
48 |
sortable
|
49 |
body={scoreBodyTemplate('classification_accuracy', {
|
50 |
minScore: 0,
|
51 |
+
maxScore: 0.5
|
|
|
52 |
})}
|
53 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
54 |
/>,
|
|
|
69 |
sortable
|
70 |
body={scoreBodyTemplate('mmlu_accuracy', {
|
71 |
minScore: 0,
|
72 |
+
maxScore: 1
|
|
|
73 |
})}
|
74 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
75 |
/>,
|
|
|
80 |
sortable
|
81 |
body={scoreBodyTemplate('arc_accuracy', {
|
82 |
minScore: 0,
|
83 |
+
maxScore: 1
|
|
|
84 |
})}
|
85 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
86 |
/>,
|
|
|
91 |
sortable
|
92 |
body={scoreBodyTemplate('mgsm_accuracy', {
|
93 |
minScore: 0,
|
94 |
+
maxScore: 1
|
|
|
95 |
})}
|
96 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
97 |
/>,
|
frontend/src/components/ScoreField.js
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
const ScoreField = (score, minScore, maxScore
|
2 |
let percentage = 100
|
3 |
let barColor = "rgba(210, 106, 255, 0.1)" // light violet for missing data
|
4 |
if (score !== null) {
|
@@ -50,7 +50,6 @@ const ScoreField = (score, minScore, maxScore, isMachineTranslated = false) => {
|
|
50 |
}}
|
51 |
>
|
52 |
{score !== null ? (score * 100).toFixed(1)+"%" : '–'}
|
53 |
-
{isMachineTranslated && score !== null && <span style={{color: '#666', fontSize: '0.8em'}}>*</span>}
|
54 |
</span>
|
55 |
</div>
|
56 |
)
|
|
|
1 |
+
const ScoreField = (score, minScore, maxScore) => {
|
2 |
let percentage = 100
|
3 |
let barColor = "rgba(210, 106, 255, 0.1)" // light violet for missing data
|
4 |
if (score !== null) {
|
|
|
50 |
}}
|
51 |
>
|
52 |
{score !== null ? (score * 100).toFixed(1)+"%" : '–'}
|
|
|
53 |
</span>
|
54 |
</div>
|
55 |
)
|
frontend/src/components/SpeakerPlot.js
CHANGED
@@ -73,10 +73,10 @@ const SpeakerPlot = ({ data, width = 750, height = 500 }) => {
|
|
73 |
textStrokeOpacity: 0,
|
74 |
textFillOpacity: 0
|
75 |
}),
|
76 |
-
|
77 |
x: 40,
|
78 |
y: languages[39].cumSpeakers / 1e6
|
79 |
-
})
|
80 |
]
|
81 |
})
|
82 |
containerRef.current.append(plot)
|
|
|
73 |
textStrokeOpacity: 0,
|
74 |
textFillOpacity: 0
|
75 |
}),
|
76 |
+
Plot.tip(['The 40 most spoken languages cover 80% of all speakers.'], {
|
77 |
x: 40,
|
78 |
y: languages[39].cumSpeakers / 1e6
|
79 |
+
})
|
80 |
]
|
81 |
})
|
82 |
containerRef.current.append(plot)
|
frontend/src/components/WorldMap.js
CHANGED
@@ -26,13 +26,13 @@ const makeTitle = data => d => {
|
|
26 |
a =>
|
27 |
`${smoothProgressBar(a.population / pop)} ${
|
28 |
a.name
|
29 |
-
} – ${a.score
|
30 |
)
|
31 |
.join('\n\n') + (languages?.length > 10 ? `\n\n...` : '')
|
32 |
-
return `${d.properties.ADMIN} – ${cData?.score
|
33 |
}
|
34 |
|
35 |
-
const WorldMap = ({ data, width = 750, height = 500
|
36 |
const containerRef = useRef()
|
37 |
const [mapData, setMapData] = useState()
|
38 |
|
@@ -48,22 +48,8 @@ const WorldMap = ({ data, width = 750, height = 500, allLanguages = [] }) => {
|
|
48 |
acc[country.iso2] = country
|
49 |
return acc
|
50 |
}, {})
|
51 |
-
// Count languages that have any evaluation data
|
52 |
-
const evaluatedLanguagesCount = allLanguages.filter(lang => {
|
53 |
-
const hasAnyScores = [
|
54 |
-
'translation_from_bleu',
|
55 |
-
'translation_to_bleu',
|
56 |
-
'classification_accuracy',
|
57 |
-
'mmlu_accuracy',
|
58 |
-
'arc_accuracy',
|
59 |
-
'truthfulqa_accuracy',
|
60 |
-
'mgsm_accuracy'
|
61 |
-
].some(metric => lang[metric] !== null && lang[metric] !== undefined)
|
62 |
-
return hasAnyScores
|
63 |
-
}).length
|
64 |
-
|
65 |
const plot = Plot.plot({
|
66 |
-
subtitle:
|
67 |
width: width,
|
68 |
height: height,
|
69 |
projection: 'equal-earth',
|
@@ -75,12 +61,11 @@ const WorldMap = ({ data, width = 750, height = 500, allLanguages = [] }) => {
|
|
75 |
})
|
76 |
],
|
77 |
color: {
|
78 |
-
scheme: '
|
79 |
-
unknown: '
|
80 |
label: 'Score',
|
81 |
legend: true,
|
82 |
-
domain: [0, 1]
|
83 |
-
pivot: 0.5
|
84 |
},
|
85 |
style: {
|
86 |
fontFamily: 'monospace'
|
|
|
26 |
a =>
|
27 |
`${smoothProgressBar(a.population / pop)} ${
|
28 |
a.name
|
29 |
+
} – ${a.score.toFixed(2)}`
|
30 |
)
|
31 |
.join('\n\n') + (languages?.length > 10 ? `\n\n...` : '')
|
32 |
+
return `${d.properties.ADMIN} – ${cData?.score.toFixed(2)}\n\n${langstring}`
|
33 |
}
|
34 |
|
35 |
+
const WorldMap = ({ data, width = 750, height = 500 }) => {
|
36 |
const containerRef = useRef()
|
37 |
const [mapData, setMapData] = useState()
|
38 |
|
|
|
48 |
acc[country.iso2] = country
|
49 |
return acc
|
50 |
}, {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
const plot = Plot.plot({
|
52 |
+
subtitle: 'Language Proficiency Score by Country',
|
53 |
width: width,
|
54 |
height: height,
|
55 |
projection: 'equal-earth',
|
|
|
61 |
})
|
62 |
],
|
63 |
color: {
|
64 |
+
scheme: 'Greens',
|
65 |
+
unknown: 'gray',
|
66 |
label: 'Score',
|
67 |
legend: true,
|
68 |
+
domain: [0, 1]
|
|
|
69 |
},
|
70 |
style: {
|
71 |
fontFamily: 'monospace'
|
languages.json
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
"family":"Indo-European",
|
8 |
"flores_path":"eng_Latn",
|
9 |
"fleurs_tag":"en_us",
|
10 |
-
"commonvoice_hours":
|
11 |
"commonvoice_locale":"en",
|
12 |
"in_benchmark":true
|
13 |
},
|
@@ -32,7 +32,7 @@
|
|
32 |
"flores_path":"hin_Deva",
|
33 |
"fleurs_tag":"hi_in",
|
34 |
"commonvoice_hours":16.0,
|
35 |
-
"commonvoice_locale":"hi",
|
36 |
"in_benchmark":true
|
37 |
},
|
38 |
{
|
@@ -43,7 +43,7 @@
|
|
43 |
"family":"Indo-European",
|
44 |
"flores_path":"spa_Latn",
|
45 |
"fleurs_tag":"es_419",
|
46 |
-
"commonvoice_hours":
|
47 |
"commonvoice_locale":"es",
|
48 |
"in_benchmark":true
|
49 |
},
|
@@ -79,7 +79,7 @@
|
|
79 |
"family":"Indo-European",
|
80 |
"flores_path":"fra_Latn",
|
81 |
"fleurs_tag":"fr_fr",
|
82 |
-
"commonvoice_hours":
|
83 |
"commonvoice_locale":"fr",
|
84 |
"in_benchmark":true
|
85 |
},
|
@@ -103,7 +103,7 @@
|
|
103 |
"family":"Indo-European",
|
104 |
"flores_path":"por_Latn",
|
105 |
"fleurs_tag":"pt_br",
|
106 |
-
"commonvoice_hours":
|
107 |
"commonvoice_locale":"pt",
|
108 |
"in_benchmark":true
|
109 |
},
|
@@ -115,7 +115,7 @@
|
|
115 |
"family":"Indo-European",
|
116 |
"flores_path":"pan_Guru",
|
117 |
"fleurs_tag":"pa_in",
|
118 |
-
"commonvoice_hours":2.
|
119 |
"commonvoice_locale":"pa-IN",
|
120 |
"in_benchmark":true
|
121 |
},
|
@@ -127,7 +127,7 @@
|
|
127 |
"family":"Indo-European",
|
128 |
"flores_path":"rus_Cyrl",
|
129 |
"fleurs_tag":"ru_ru",
|
130 |
-
"commonvoice_hours":
|
131 |
"commonvoice_locale":"ru",
|
132 |
"in_benchmark":true
|
133 |
},
|
@@ -139,7 +139,7 @@
|
|
139 |
"family":"Atlantic-Congo",
|
140 |
"flores_path":"swh_Latn",
|
141 |
"fleurs_tag":"sw_ke",
|
142 |
-
"commonvoice_hours":
|
143 |
"commonvoice_locale":"sw",
|
144 |
"in_benchmark":true
|
145 |
},
|
@@ -151,7 +151,7 @@
|
|
151 |
"family":"Austronesian",
|
152 |
"flores_path":"ind_Latn",
|
153 |
"fleurs_tag":"id_id",
|
154 |
-
"commonvoice_hours":
|
155 |
"commonvoice_locale":"id",
|
156 |
"in_benchmark":true
|
157 |
},
|
@@ -163,7 +163,7 @@
|
|
163 |
"family":"Indo-European",
|
164 |
"flores_path":"deu_Latn",
|
165 |
"fleurs_tag":"de_de",
|
166 |
-
"commonvoice_hours":
|
167 |
"commonvoice_locale":"de",
|
168 |
"in_benchmark":true
|
169 |
},
|
@@ -379,7 +379,7 @@
|
|
379 |
"family":"Indo-European",
|
380 |
"flores_path":null,
|
381 |
"fleurs_tag":"ps_af",
|
382 |
-
"commonvoice_hours":
|
383 |
"commonvoice_locale":"ps",
|
384 |
"in_benchmark":false
|
385 |
},
|
@@ -439,7 +439,7 @@
|
|
439 |
"family":"Indo-European",
|
440 |
"flores_path":"pol_Latn",
|
441 |
"fleurs_tag":"pl_pl",
|
442 |
-
"commonvoice_hours":
|
443 |
"commonvoice_locale":"pl",
|
444 |
"in_benchmark":true
|
445 |
},
|
@@ -619,7 +619,7 @@
|
|
619 |
"family":"Indo-European",
|
620 |
"flores_path":"nld_Latn",
|
621 |
"fleurs_tag":"nl_nl",
|
622 |
-
"commonvoice_hours":
|
623 |
"commonvoice_locale":"nl",
|
624 |
"in_benchmark":true
|
625 |
},
|
@@ -655,7 +655,7 @@
|
|
655 |
"family":"Atlantic-Congo",
|
656 |
"flores_path":"yor_Latn",
|
657 |
"fleurs_tag":"yo_ng",
|
658 |
-
"commonvoice_hours":6.
|
659 |
"commonvoice_locale":"yo",
|
660 |
"in_benchmark":true
|
661 |
},
|
@@ -979,7 +979,7 @@
|
|
979 |
"family":"Turkic",
|
980 |
"flores_path":"kaz_Cyrl",
|
981 |
"fleurs_tag":"kk_kz",
|
982 |
-
"commonvoice_hours":2.
|
983 |
"commonvoice_locale":"kk",
|
984 |
"in_benchmark":true
|
985 |
},
|
@@ -1027,7 +1027,7 @@
|
|
1027 |
"family":"Uralic",
|
1028 |
"flores_path":"hun_Latn",
|
1029 |
"fleurs_tag":"hu_hu",
|
1030 |
-
"commonvoice_hours":
|
1031 |
"commonvoice_locale":"hu",
|
1032 |
"in_benchmark":true
|
1033 |
},
|
@@ -1099,7 +1099,7 @@
|
|
1099 |
"family":"Indo-European",
|
1100 |
"flores_path":"ckb_Arab",
|
1101 |
"fleurs_tag":"ckb_iq",
|
1102 |
-
"commonvoice_hours":
|
1103 |
"commonvoice_locale":"ckb",
|
1104 |
"in_benchmark":true
|
1105 |
},
|
@@ -1183,7 +1183,7 @@
|
|
1183 |
"family":"Indo-European",
|
1184 |
"flores_path":"bel_Cyrl",
|
1185 |
"fleurs_tag":"be_by",
|
1186 |
-
"commonvoice_hours":
|
1187 |
"commonvoice_locale":"be",
|
1188 |
"in_benchmark":true
|
1189 |
},
|
@@ -1207,7 +1207,7 @@
|
|
1207 |
"family":"Indo-European",
|
1208 |
"flores_path":"tgk_Cyrl",
|
1209 |
"fleurs_tag":"tg_tj",
|
1210 |
-
"commonvoice_hours":0.
|
1211 |
"commonvoice_locale":"tg",
|
1212 |
"in_benchmark":true
|
1213 |
},
|
@@ -1243,7 +1243,7 @@
|
|
1243 |
"family":"Indo-European",
|
1244 |
"flores_path":"afr_Latn",
|
1245 |
"fleurs_tag":"af_za",
|
1246 |
-
"commonvoice_hours":0.
|
1247 |
"commonvoice_locale":"af",
|
1248 |
"in_benchmark":true
|
1249 |
},
|
@@ -1291,7 +1291,7 @@
|
|
1291 |
"family":"Indo-European",
|
1292 |
"flores_path":"cat_Latn",
|
1293 |
"fleurs_tag":"ca_es",
|
1294 |
-
"commonvoice_hours":
|
1295 |
"commonvoice_locale":"ca",
|
1296 |
"in_benchmark":true
|
1297 |
},
|
@@ -1303,7 +1303,7 @@
|
|
1303 |
"family":"Afro-Asiatic",
|
1304 |
"flores_path":"heb_Hebr",
|
1305 |
"fleurs_tag":"he_il",
|
1306 |
-
"commonvoice_hours":
|
1307 |
"commonvoice_locale":"he",
|
1308 |
"in_benchmark":true
|
1309 |
},
|
@@ -1375,7 +1375,7 @@
|
|
1375 |
"family":"Turkic",
|
1376 |
"flores_path":"uig_Arab",
|
1377 |
"fleurs_tag":null,
|
1378 |
-
"commonvoice_hours":
|
1379 |
"commonvoice_locale":"ug",
|
1380 |
"in_benchmark":true
|
1381 |
},
|
@@ -1519,7 +1519,7 @@
|
|
1519 |
"family":"Indo-European",
|
1520 |
"flores_path":"kmr_Latn",
|
1521 |
"fleurs_tag":null,
|
1522 |
-
"commonvoice_hours":
|
1523 |
"commonvoice_locale":"kmr",
|
1524 |
"in_benchmark":true
|
1525 |
},
|
@@ -1555,7 +1555,7 @@
|
|
1555 |
"family":"Indo-European",
|
1556 |
"flores_path":"slk_Latn",
|
1557 |
"fleurs_tag":"sk_sk",
|
1558 |
-
"commonvoice_hours":
|
1559 |
"commonvoice_locale":"sk",
|
1560 |
"in_benchmark":true
|
1561 |
},
|
@@ -1675,7 +1675,7 @@
|
|
1675 |
"family":"Tupian",
|
1676 |
"flores_path":"gug_Latn",
|
1677 |
"fleurs_tag":null,
|
1678 |
-
"commonvoice_hours":4.
|
1679 |
"commonvoice_locale":"gn",
|
1680 |
"in_benchmark":true
|
1681 |
},
|
@@ -1747,7 +1747,7 @@
|
|
1747 |
"family":"Indo-European",
|
1748 |
"flores_path":"nob_Latn",
|
1749 |
"fleurs_tag":"nb_no",
|
1750 |
-
"commonvoice_hours":
|
1751 |
"commonvoice_locale":"nb-NO",
|
1752 |
"in_benchmark":true
|
1753 |
},
|
@@ -2155,7 +2155,7 @@
|
|
2155 |
"family":"Kartvelian",
|
2156 |
"flores_path":"kat_Geor",
|
2157 |
"fleurs_tag":"ka_ge",
|
2158 |
-
"commonvoice_hours":
|
2159 |
"commonvoice_locale":"ka",
|
2160 |
"in_benchmark":true
|
2161 |
},
|
@@ -2167,7 +2167,7 @@
|
|
2167 |
"family":"Indo-European",
|
2168 |
"flores_path":"glg_Latn",
|
2169 |
"fleurs_tag":"gl_es",
|
2170 |
-
"commonvoice_hours":
|
2171 |
"commonvoice_locale":"gl",
|
2172 |
"in_benchmark":true
|
2173 |
},
|
@@ -2323,7 +2323,7 @@
|
|
2323 |
"family":"Dravidian",
|
2324 |
"flores_path":null,
|
2325 |
"fleurs_tag":null,
|
2326 |
-
"commonvoice_hours":
|
2327 |
"commonvoice_locale":"brh",
|
2328 |
"in_benchmark":false
|
2329 |
},
|
@@ -2623,7 +2623,7 @@
|
|
2623 |
"family":"Indo-European",
|
2624 |
"flores_path":null,
|
2625 |
"fleurs_tag":null,
|
2626 |
-
"commonvoice_hours":
|
2627 |
"commonvoice_locale":"haz",
|
2628 |
"in_benchmark":false
|
2629 |
},
|
@@ -2695,7 +2695,7 @@
|
|
2695 |
"family":"Indo-European",
|
2696 |
"flores_path":"oci_Latn",
|
2697 |
"fleurs_tag":"oc_fr",
|
2698 |
-
"commonvoice_hours":1.
|
2699 |
"commonvoice_locale":"oc",
|
2700 |
"in_benchmark":true
|
2701 |
},
|
@@ -3175,8 +3175,8 @@
|
|
3175 |
"family":"Atlantic-Congo",
|
3176 |
"flores_path":null,
|
3177 |
"fleurs_tag":null,
|
3178 |
-
"commonvoice_hours":
|
3179 |
-
"commonvoice_locale":
|
3180 |
"in_benchmark":false
|
3181 |
},
|
3182 |
{
|
@@ -3319,8 +3319,8 @@
|
|
3319 |
"family":"Indo-European",
|
3320 |
"flores_path":null,
|
3321 |
"fleurs_tag":null,
|
3322 |
-
"commonvoice_hours":
|
3323 |
-
"commonvoice_locale":
|
3324 |
"in_benchmark":false
|
3325 |
},
|
3326 |
{
|
@@ -3331,7 +3331,7 @@
|
|
3331 |
"family":"Indo-European",
|
3332 |
"flores_path":"gle_Latn",
|
3333 |
"fleurs_tag":"ga_ie",
|
3334 |
-
"commonvoice_hours":
|
3335 |
"commonvoice_locale":"ga-IE",
|
3336 |
"in_benchmark":true
|
3337 |
},
|
@@ -3487,7 +3487,7 @@
|
|
3487 |
"family":"Indo-European",
|
3488 |
"flores_path":"lvs_Latn",
|
3489 |
"fleurs_tag":"lv_lv",
|
3490 |
-
"commonvoice_hours":
|
3491 |
"commonvoice_locale":"lv",
|
3492 |
"in_benchmark":true
|
3493 |
},
|
@@ -3535,7 +3535,7 @@
|
|
3535 |
"family":null,
|
3536 |
"flores_path":"eus_Latn",
|
3537 |
"fleurs_tag":null,
|
3538 |
-
"commonvoice_hours":
|
3539 |
"commonvoice_locale":"eu",
|
3540 |
"in_benchmark":true
|
3541 |
},
|
@@ -3559,7 +3559,7 @@
|
|
3559 |
"family":"Abkhaz-Adyge",
|
3560 |
"flores_path":null,
|
3561 |
"fleurs_tag":null,
|
3562 |
-
"commonvoice_hours":
|
3563 |
"commonvoice_locale":"kbd",
|
3564 |
"in_benchmark":false
|
3565 |
},
|
@@ -3679,7 +3679,7 @@
|
|
3679 |
"family":"Indo-European",
|
3680 |
"flores_path":"ydd_Hebr",
|
3681 |
"fleurs_tag":null,
|
3682 |
-
"commonvoice_hours":
|
3683 |
"commonvoice_locale":"yi",
|
3684 |
"in_benchmark":true
|
3685 |
},
|
@@ -3991,8 +3991,8 @@
|
|
3991 |
"family":"Atlantic-Congo",
|
3992 |
"flores_path":null,
|
3993 |
"fleurs_tag":null,
|
3994 |
-
"commonvoice_hours":
|
3995 |
-
"commonvoice_locale":
|
3996 |
"in_benchmark":false
|
3997 |
},
|
3998 |
{
|
@@ -4099,8 +4099,8 @@
|
|
4099 |
"family":"Indo-European",
|
4100 |
"flores_path":null,
|
4101 |
"fleurs_tag":null,
|
4102 |
-
"commonvoice_hours":
|
4103 |
-
"commonvoice_locale":
|
4104 |
"in_benchmark":false
|
4105 |
},
|
4106 |
{
|
@@ -4351,7 +4351,7 @@
|
|
4351 |
"family":"Indo-European",
|
4352 |
"flores_path":null,
|
4353 |
"fleurs_tag":null,
|
4354 |
-
"commonvoice_hours":
|
4355 |
"commonvoice_locale":"br",
|
4356 |
"in_benchmark":false
|
4357 |
},
|
@@ -4651,7 +4651,7 @@
|
|
4651 |
"family":"Abkhaz-Adyge",
|
4652 |
"flores_path":null,
|
4653 |
"fleurs_tag":null,
|
4654 |
-
"commonvoice_hours":
|
4655 |
"commonvoice_locale":"ady",
|
4656 |
"in_benchmark":false
|
4657 |
},
|
@@ -5011,7 +5011,7 @@
|
|
5011 |
"family":"Nakh-Daghestanian",
|
5012 |
"flores_path":"dar_Cyrl",
|
5013 |
"fleurs_tag":null,
|
5014 |
-
"commonvoice_hours":
|
5015 |
"commonvoice_locale":"dar",
|
5016 |
"in_benchmark":true
|
5017 |
},
|
@@ -7879,7 +7879,7 @@
|
|
7879 |
"family":"Artificial Language",
|
7880 |
"flores_path":"epo_Latn",
|
7881 |
"fleurs_tag":null,
|
7882 |
-
"commonvoice_hours":
|
7883 |
"commonvoice_locale":"eo",
|
7884 |
"in_benchmark":true
|
7885 |
},
|
|
|
7 |
"family":"Indo-European",
|
8 |
"flores_path":"eng_Latn",
|
9 |
"fleurs_tag":"en_us",
|
10 |
+
"commonvoice_hours":2674.0,
|
11 |
"commonvoice_locale":"en",
|
12 |
"in_benchmark":true
|
13 |
},
|
|
|
32 |
"flores_path":"hin_Deva",
|
33 |
"fleurs_tag":"hi_in",
|
34 |
"commonvoice_hours":16.0,
|
35 |
+
"commonvoice_locale":"hi-IN",
|
36 |
"in_benchmark":true
|
37 |
},
|
38 |
{
|
|
|
43 |
"family":"Indo-European",
|
44 |
"flores_path":"spa_Latn",
|
45 |
"fleurs_tag":"es_419",
|
46 |
+
"commonvoice_hours":448.0,
|
47 |
"commonvoice_locale":"es",
|
48 |
"in_benchmark":true
|
49 |
},
|
|
|
79 |
"family":"Indo-European",
|
80 |
"flores_path":"fra_Latn",
|
81 |
"fleurs_tag":"fr_fr",
|
82 |
+
"commonvoice_hours":1065.0,
|
83 |
"commonvoice_locale":"fr",
|
84 |
"in_benchmark":true
|
85 |
},
|
|
|
103 |
"family":"Indo-European",
|
104 |
"flores_path":"por_Latn",
|
105 |
"fleurs_tag":"pt_br",
|
106 |
+
"commonvoice_hours":180.0,
|
107 |
"commonvoice_locale":"pt",
|
108 |
"in_benchmark":true
|
109 |
},
|
|
|
115 |
"family":"Indo-European",
|
116 |
"flores_path":"pan_Guru",
|
117 |
"fleurs_tag":"pa_in",
|
118 |
+
"commonvoice_hours":2.3,
|
119 |
"commonvoice_locale":"pa-IN",
|
120 |
"in_benchmark":true
|
121 |
},
|
|
|
127 |
"family":"Indo-European",
|
128 |
"flores_path":"rus_Cyrl",
|
129 |
"fleurs_tag":"ru_ru",
|
130 |
+
"commonvoice_hours":245.0,
|
131 |
"commonvoice_locale":"ru",
|
132 |
"in_benchmark":true
|
133 |
},
|
|
|
139 |
"family":"Atlantic-Congo",
|
140 |
"flores_path":"swh_Latn",
|
141 |
"fleurs_tag":"sw_ke",
|
142 |
+
"commonvoice_hours":411.0,
|
143 |
"commonvoice_locale":"sw",
|
144 |
"in_benchmark":true
|
145 |
},
|
|
|
151 |
"family":"Austronesian",
|
152 |
"flores_path":"ind_Latn",
|
153 |
"fleurs_tag":"id_id",
|
154 |
+
"commonvoice_hours":33.0,
|
155 |
"commonvoice_locale":"id",
|
156 |
"in_benchmark":true
|
157 |
},
|
|
|
163 |
"family":"Indo-European",
|
164 |
"flores_path":"deu_Latn",
|
165 |
"fleurs_tag":"de_de",
|
166 |
+
"commonvoice_hours":1369.0,
|
167 |
"commonvoice_locale":"de",
|
168 |
"in_benchmark":true
|
169 |
},
|
|
|
379 |
"family":"Indo-European",
|
380 |
"flores_path":null,
|
381 |
"fleurs_tag":"ps_af",
|
382 |
+
"commonvoice_hours":81.0,
|
383 |
"commonvoice_locale":"ps",
|
384 |
"in_benchmark":false
|
385 |
},
|
|
|
439 |
"family":"Indo-European",
|
440 |
"flores_path":"pol_Latn",
|
441 |
"fleurs_tag":"pl_pl",
|
442 |
+
"commonvoice_hours":175.0,
|
443 |
"commonvoice_locale":"pl",
|
444 |
"in_benchmark":true
|
445 |
},
|
|
|
619 |
"family":"Indo-European",
|
620 |
"flores_path":"nld_Latn",
|
621 |
"fleurs_tag":"nl_nl",
|
622 |
+
"commonvoice_hours":120.0,
|
623 |
"commonvoice_locale":"nl",
|
624 |
"in_benchmark":true
|
625 |
},
|
|
|
655 |
"family":"Atlantic-Congo",
|
656 |
"flores_path":"yor_Latn",
|
657 |
"fleurs_tag":"yo_ng",
|
658 |
+
"commonvoice_hours":6.3,
|
659 |
"commonvoice_locale":"yo",
|
660 |
"in_benchmark":true
|
661 |
},
|
|
|
979 |
"family":"Turkic",
|
980 |
"flores_path":"kaz_Cyrl",
|
981 |
"fleurs_tag":"kk_kz",
|
982 |
+
"commonvoice_hours":2.2,
|
983 |
"commonvoice_locale":"kk",
|
984 |
"in_benchmark":true
|
985 |
},
|
|
|
1027 |
"family":"Uralic",
|
1028 |
"flores_path":"hun_Latn",
|
1029 |
"fleurs_tag":"hu_hu",
|
1030 |
+
"commonvoice_hours":93.0,
|
1031 |
"commonvoice_locale":"hu",
|
1032 |
"in_benchmark":true
|
1033 |
},
|
|
|
1099 |
"family":"Indo-European",
|
1100 |
"flores_path":"ckb_Arab",
|
1101 |
"fleurs_tag":"ckb_iq",
|
1102 |
+
"commonvoice_hours":135.0,
|
1103 |
"commonvoice_locale":"ckb",
|
1104 |
"in_benchmark":true
|
1105 |
},
|
|
|
1183 |
"family":"Indo-European",
|
1184 |
"flores_path":"bel_Cyrl",
|
1185 |
"fleurs_tag":"be_by",
|
1186 |
+
"commonvoice_hours":1810.0,
|
1187 |
"commonvoice_locale":"be",
|
1188 |
"in_benchmark":true
|
1189 |
},
|
|
|
1207 |
"family":"Indo-European",
|
1208 |
"flores_path":"tgk_Cyrl",
|
1209 |
"fleurs_tag":"tg_tj",
|
1210 |
+
"commonvoice_hours":0.4,
|
1211 |
"commonvoice_locale":"tg",
|
1212 |
"in_benchmark":true
|
1213 |
},
|
|
|
1243 |
"family":"Indo-European",
|
1244 |
"flores_path":"afr_Latn",
|
1245 |
"fleurs_tag":"af_za",
|
1246 |
+
"commonvoice_hours":0.5,
|
1247 |
"commonvoice_locale":"af",
|
1248 |
"in_benchmark":true
|
1249 |
},
|
|
|
1291 |
"family":"Indo-European",
|
1292 |
"flores_path":"cat_Latn",
|
1293 |
"fleurs_tag":"ca_es",
|
1294 |
+
"commonvoice_hours":2863.0,
|
1295 |
"commonvoice_locale":"ca",
|
1296 |
"in_benchmark":true
|
1297 |
},
|
|
|
1303 |
"family":"Afro-Asiatic",
|
1304 |
"flores_path":"heb_Hebr",
|
1305 |
"fleurs_tag":"he_il",
|
1306 |
+
"commonvoice_hours":1.4,
|
1307 |
"commonvoice_locale":"he",
|
1308 |
"in_benchmark":true
|
1309 |
},
|
|
|
1375 |
"family":"Turkic",
|
1376 |
"flores_path":"uig_Arab",
|
1377 |
"fleurs_tag":null,
|
1378 |
+
"commonvoice_hours":411.0,
|
1379 |
"commonvoice_locale":"ug",
|
1380 |
"in_benchmark":true
|
1381 |
},
|
|
|
1519 |
"family":"Indo-European",
|
1520 |
"flores_path":"kmr_Latn",
|
1521 |
"fleurs_tag":null,
|
1522 |
+
"commonvoice_hours":69.0,
|
1523 |
"commonvoice_locale":"kmr",
|
1524 |
"in_benchmark":true
|
1525 |
},
|
|
|
1555 |
"family":"Indo-European",
|
1556 |
"flores_path":"slk_Latn",
|
1557 |
"fleurs_tag":"sk_sk",
|
1558 |
+
"commonvoice_hours":51.0,
|
1559 |
"commonvoice_locale":"sk",
|
1560 |
"in_benchmark":true
|
1561 |
},
|
|
|
1675 |
"family":"Tupian",
|
1676 |
"flores_path":"gug_Latn",
|
1677 |
"fleurs_tag":null,
|
1678 |
+
"commonvoice_hours":4.0,
|
1679 |
"commonvoice_locale":"gn",
|
1680 |
"in_benchmark":true
|
1681 |
},
|
|
|
1747 |
"family":"Indo-European",
|
1748 |
"flores_path":"nob_Latn",
|
1749 |
"fleurs_tag":"nb_no",
|
1750 |
+
"commonvoice_hours":0.5,
|
1751 |
"commonvoice_locale":"nb-NO",
|
1752 |
"in_benchmark":true
|
1753 |
},
|
|
|
2155 |
"family":"Kartvelian",
|
2156 |
"flores_path":"kat_Geor",
|
2157 |
"fleurs_tag":"ka_ge",
|
2158 |
+
"commonvoice_hours":166.0,
|
2159 |
"commonvoice_locale":"ka",
|
2160 |
"in_benchmark":true
|
2161 |
},
|
|
|
2167 |
"family":"Indo-European",
|
2168 |
"flores_path":"glg_Latn",
|
2169 |
"fleurs_tag":"gl_es",
|
2170 |
+
"commonvoice_hours":117.0,
|
2171 |
"commonvoice_locale":"gl",
|
2172 |
"in_benchmark":true
|
2173 |
},
|
|
|
2323 |
"family":"Dravidian",
|
2324 |
"flores_path":null,
|
2325 |
"fleurs_tag":null,
|
2326 |
+
"commonvoice_hours":1.2,
|
2327 |
"commonvoice_locale":"brh",
|
2328 |
"in_benchmark":false
|
2329 |
},
|
|
|
2623 |
"family":"Indo-European",
|
2624 |
"flores_path":null,
|
2625 |
"fleurs_tag":null,
|
2626 |
+
"commonvoice_hours":0.9,
|
2627 |
"commonvoice_locale":"haz",
|
2628 |
"in_benchmark":false
|
2629 |
},
|
|
|
2695 |
"family":"Indo-European",
|
2696 |
"flores_path":"oci_Latn",
|
2697 |
"fleurs_tag":"oc_fr",
|
2698 |
+
"commonvoice_hours":1.8,
|
2699 |
"commonvoice_locale":"oc",
|
2700 |
"in_benchmark":true
|
2701 |
},
|
|
|
3175 |
"family":"Atlantic-Congo",
|
3176 |
"flores_path":null,
|
3177 |
"fleurs_tag":null,
|
3178 |
+
"commonvoice_hours":null,
|
3179 |
+
"commonvoice_locale":null,
|
3180 |
"in_benchmark":false
|
3181 |
},
|
3182 |
{
|
|
|
3319 |
"family":"Indo-European",
|
3320 |
"flores_path":null,
|
3321 |
"fleurs_tag":null,
|
3322 |
+
"commonvoice_hours":null,
|
3323 |
+
"commonvoice_locale":null,
|
3324 |
"in_benchmark":false
|
3325 |
},
|
3326 |
{
|
|
|
3331 |
"family":"Indo-European",
|
3332 |
"flores_path":"gle_Latn",
|
3333 |
"fleurs_tag":"ga_ie",
|
3334 |
+
"commonvoice_hours":8.3,
|
3335 |
"commonvoice_locale":"ga-IE",
|
3336 |
"in_benchmark":true
|
3337 |
},
|
|
|
3487 |
"family":"Indo-European",
|
3488 |
"flores_path":"lvs_Latn",
|
3489 |
"fleurs_tag":"lv_lv",
|
3490 |
+
"commonvoice_hours":262.0,
|
3491 |
"commonvoice_locale":"lv",
|
3492 |
"in_benchmark":true
|
3493 |
},
|
|
|
3535 |
"family":null,
|
3536 |
"flores_path":"eus_Latn",
|
3537 |
"fleurs_tag":null,
|
3538 |
+
"commonvoice_hours":440.0,
|
3539 |
"commonvoice_locale":"eu",
|
3540 |
"in_benchmark":true
|
3541 |
},
|
|
|
3559 |
"family":"Abkhaz-Adyge",
|
3560 |
"flores_path":null,
|
3561 |
"fleurs_tag":null,
|
3562 |
+
"commonvoice_hours":83.0,
|
3563 |
"commonvoice_locale":"kbd",
|
3564 |
"in_benchmark":false
|
3565 |
},
|
|
|
3679 |
"family":"Indo-European",
|
3680 |
"flores_path":"ydd_Hebr",
|
3681 |
"fleurs_tag":null,
|
3682 |
+
"commonvoice_hours":0.7,
|
3683 |
"commonvoice_locale":"yi",
|
3684 |
"in_benchmark":true
|
3685 |
},
|
|
|
3991 |
"family":"Atlantic-Congo",
|
3992 |
"flores_path":null,
|
3993 |
"fleurs_tag":null,
|
3994 |
+
"commonvoice_hours":null,
|
3995 |
+
"commonvoice_locale":null,
|
3996 |
"in_benchmark":false
|
3997 |
},
|
3998 |
{
|
|
|
4099 |
"family":"Indo-European",
|
4100 |
"flores_path":null,
|
4101 |
"fleurs_tag":null,
|
4102 |
+
"commonvoice_hours":null,
|
4103 |
+
"commonvoice_locale":null,
|
4104 |
"in_benchmark":false
|
4105 |
},
|
4106 |
{
|
|
|
4351 |
"family":"Indo-European",
|
4352 |
"flores_path":null,
|
4353 |
"fleurs_tag":null,
|
4354 |
+
"commonvoice_hours":29.0,
|
4355 |
"commonvoice_locale":"br",
|
4356 |
"in_benchmark":false
|
4357 |
},
|
|
|
4651 |
"family":"Abkhaz-Adyge",
|
4652 |
"flores_path":null,
|
4653 |
"fleurs_tag":null,
|
4654 |
+
"commonvoice_hours":30.0,
|
4655 |
"commonvoice_locale":"ady",
|
4656 |
"in_benchmark":false
|
4657 |
},
|
|
|
5011 |
"family":"Nakh-Daghestanian",
|
5012 |
"flores_path":"dar_Cyrl",
|
5013 |
"fleurs_tag":null,
|
5014 |
+
"commonvoice_hours":0.0,
|
5015 |
"commonvoice_locale":"dar",
|
5016 |
"in_benchmark":true
|
5017 |
},
|
|
|
7879 |
"family":"Artificial Language",
|
7880 |
"flores_path":"epo_Latn",
|
7881 |
"fleurs_tag":null,
|
7882 |
+
"commonvoice_hours":1436.0,
|
7883 |
"commonvoice_locale":"eo",
|
7884 |
"in_benchmark":true
|
7885 |
},
|
models.json
CHANGED
@@ -20,15 +20,15 @@
|
|
20 |
]
|
21 |
},
|
22 |
{
|
23 |
-
"id":"anthropic\/claude-3-
|
24 |
-
"name":"Claude 3
|
25 |
"provider_name":"Anthropic",
|
26 |
-
"cost":
|
27 |
"hf_id":null,
|
28 |
"size":null,
|
29 |
"type":"closed-source",
|
30 |
"license":null,
|
31 |
-
"creation_date":
|
32 |
"tasks":[
|
33 |
"translation_from",
|
34 |
"translation_to",
|
@@ -79,51 +79,11 @@
|
|
79 |
"mgsm"
|
80 |
]
|
81 |
},
|
82 |
-
{
|
83 |
-
"id":"arliai\/qwq-32b-arliai-rpr-v1",
|
84 |
-
"name":"QwQ 32B RpR v1",
|
85 |
-
"provider_name":"ArliAI",
|
86 |
-
"cost":0.0,
|
87 |
-
"hf_id":"ArliAI\/QwQ-32B-ArliAI-RpR-v1",
|
88 |
-
"size":32763876352.0,
|
89 |
-
"type":"open-source",
|
90 |
-
"license":"Apache 2.0",
|
91 |
-
"creation_date":1743984000000,
|
92 |
-
"tasks":[
|
93 |
-
"translation_from",
|
94 |
-
"translation_to",
|
95 |
-
"classification",
|
96 |
-
"mmlu",
|
97 |
-
"arc",
|
98 |
-
"truthfulqa",
|
99 |
-
"mgsm"
|
100 |
-
]
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"id":"cohere\/command-r-08-2024",
|
104 |
-
"name":"Command R (08-2024)",
|
105 |
-
"provider_name":"Cohere",
|
106 |
-
"cost":0.6,
|
107 |
-
"hf_id":null,
|
108 |
-
"size":null,
|
109 |
-
"type":"closed-source",
|
110 |
-
"license":null,
|
111 |
-
"creation_date":1724976000000,
|
112 |
-
"tasks":[
|
113 |
-
"translation_from",
|
114 |
-
"translation_to",
|
115 |
-
"classification",
|
116 |
-
"mmlu",
|
117 |
-
"arc",
|
118 |
-
"truthfulqa",
|
119 |
-
"mgsm"
|
120 |
-
]
|
121 |
-
},
|
122 |
{
|
123 |
"id":"deepseek\/deepseek-chat",
|
124 |
"name":"DeepSeek V3",
|
125 |
"provider_name":"DeepSeek",
|
126 |
-
"cost":0.
|
127 |
"hf_id":"deepseek-ai\/DeepSeek-V3",
|
128 |
"size":684531386000.0,
|
129 |
"type":"open-source",
|
@@ -159,26 +119,6 @@
|
|
159 |
"mgsm"
|
160 |
]
|
161 |
},
|
162 |
-
{
|
163 |
-
"id":"deepseek\/deepseek-chat-v3.1",
|
164 |
-
"name":"DeepSeek V3.1",
|
165 |
-
"provider_name":"DeepSeek",
|
166 |
-
"cost":0.0,
|
167 |
-
"hf_id":"deepseek-ai\/DeepSeek-V3.1",
|
168 |
-
"size":684531386000.0,
|
169 |
-
"type":"open-source",
|
170 |
-
"license":"Mit",
|
171 |
-
"creation_date":1755734400000,
|
172 |
-
"tasks":[
|
173 |
-
"translation_from",
|
174 |
-
"translation_to",
|
175 |
-
"classification",
|
176 |
-
"mmlu",
|
177 |
-
"arc",
|
178 |
-
"truthfulqa",
|
179 |
-
"mgsm"
|
180 |
-
]
|
181 |
-
},
|
182 |
{
|
183 |
"id":"deepseek\/deepseek-r1",
|
184 |
"name":"R1",
|
@@ -200,15 +140,15 @@
|
|
200 |
]
|
201 |
},
|
202 |
{
|
203 |
-
"id":"deepseek\/deepseek-r1-0528
|
204 |
-
"name":"
|
205 |
"provider_name":"DeepSeek",
|
206 |
"cost":0.0,
|
207 |
-
"hf_id":"deepseek-ai\/DeepSeek-R1-0528
|
208 |
-
"size":
|
209 |
"type":"open-source",
|
210 |
"license":"Mit",
|
211 |
-
"creation_date":
|
212 |
"tasks":[
|
213 |
"translation_from",
|
214 |
"translation_to",
|
@@ -280,15 +220,145 @@
|
|
280 |
]
|
281 |
},
|
282 |
{
|
283 |
-
"id":"google\/
|
284 |
-
"name":"
|
285 |
"provider_name":"Google",
|
286 |
-
"cost":0.
|
287 |
-
"hf_id":
|
288 |
-
"size":
|
289 |
-
"type":"
|
290 |
-
"license":
|
291 |
-
"creation_date":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
"tasks":[
|
293 |
"translation_from",
|
294 |
"translation_to",
|
@@ -319,6 +389,41 @@
|
|
319 |
"mgsm"
|
320 |
]
|
321 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
{
|
323 |
"id":"meta-llama\/llama-3-70b-instruct",
|
324 |
"name":"Llama 3 70B Instruct",
|
@@ -359,6 +464,30 @@
|
|
359 |
"mgsm"
|
360 |
]
|
361 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
{
|
363 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
364 |
"name":"Llama 3.3 70B Instruct",
|
@@ -439,26 +568,6 @@
|
|
439 |
"mgsm"
|
440 |
]
|
441 |
},
|
442 |
-
{
|
443 |
-
"id":"mistralai\/mistral-7b-instruct-v0.3",
|
444 |
-
"name":"Mistral 7B Instruct v0.3",
|
445 |
-
"provider_name":"Mistral",
|
446 |
-
"cost":0.05,
|
447 |
-
"hf_id":"mistralai\/Mistral-7B-Instruct-v0.3",
|
448 |
-
"size":7248023552.0,
|
449 |
-
"type":"open-source",
|
450 |
-
"license":"Apache 2.0",
|
451 |
-
"creation_date":1716336000000,
|
452 |
-
"tasks":[
|
453 |
-
"translation_from",
|
454 |
-
"translation_to",
|
455 |
-
"classification",
|
456 |
-
"mmlu",
|
457 |
-
"arc",
|
458 |
-
"truthfulqa",
|
459 |
-
"mgsm"
|
460 |
-
]
|
461 |
-
},
|
462 |
{
|
463 |
"id":"mistralai\/mistral-nemo",
|
464 |
"name":"Mistral Nemo",
|
@@ -520,55 +629,15 @@
|
|
520 |
]
|
521 |
},
|
522 |
{
|
523 |
-
"id":"
|
524 |
-
"name":"
|
525 |
-
"provider_name":"
|
526 |
-
"cost":
|
527 |
-
"hf_id":
|
528 |
"size":null,
|
529 |
-
"type":"
|
530 |
-
"license":
|
531 |
-
"creation_date":
|
532 |
-
"tasks":[
|
533 |
-
"translation_from",
|
534 |
-
"translation_to",
|
535 |
-
"classification",
|
536 |
-
"mmlu",
|
537 |
-
"arc",
|
538 |
-
"truthfulqa",
|
539 |
-
"mgsm"
|
540 |
-
]
|
541 |
-
},
|
542 |
-
{
|
543 |
-
"id":"neversleep\/llama-3-lumimaid-70b",
|
544 |
-
"name":"Llama 3 Lumimaid 70B",
|
545 |
-
"provider_name":"NeverSleep",
|
546 |
-
"cost":6.0,
|
547 |
-
"hf_id":"NeverSleep\/Llama-3-Lumimaid-70B-v0.1",
|
548 |
-
"size":70553706496.0,
|
549 |
-
"type":"open-source",
|
550 |
-
"license":"Cc By Nc 4.0",
|
551 |
-
"creation_date":1714262400000,
|
552 |
-
"tasks":[
|
553 |
-
"translation_from",
|
554 |
-
"translation_to",
|
555 |
-
"classification",
|
556 |
-
"mmlu",
|
557 |
-
"arc",
|
558 |
-
"truthfulqa",
|
559 |
-
"mgsm"
|
560 |
-
]
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"id":"nvidia\/llama-3.1-nemotron-70b-instruct",
|
564 |
-
"name":"Llama 3.1 Nemotron 70B Instruct",
|
565 |
-
"provider_name":"NVIDIA",
|
566 |
-
"cost":0.3,
|
567 |
-
"hf_id":"nvidia\/Llama-3.1-Nemotron-70B-Instruct-HF",
|
568 |
-
"size":70553706496.0,
|
569 |
-
"type":"open-source",
|
570 |
-
"license":"Llama3.1",
|
571 |
-
"creation_date":1728691200000,
|
572 |
"tasks":[
|
573 |
"translation_from",
|
574 |
"translation_to",
|
@@ -639,26 +708,6 @@
|
|
639 |
"mgsm"
|
640 |
]
|
641 |
},
|
642 |
-
{
|
643 |
-
"id":"openai\/gpt-4o-2024-11-20",
|
644 |
-
"name":"GPT-4o (2024-11-20)",
|
645 |
-
"provider_name":"OpenAI",
|
646 |
-
"cost":10.0,
|
647 |
-
"hf_id":null,
|
648 |
-
"size":null,
|
649 |
-
"type":"closed-source",
|
650 |
-
"license":null,
|
651 |
-
"creation_date":1732060800000,
|
652 |
-
"tasks":[
|
653 |
-
"translation_from",
|
654 |
-
"translation_to",
|
655 |
-
"classification",
|
656 |
-
"mmlu",
|
657 |
-
"arc",
|
658 |
-
"truthfulqa",
|
659 |
-
"mgsm"
|
660 |
-
]
|
661 |
-
},
|
662 |
{
|
663 |
"id":"openai\/gpt-4o-mini",
|
664 |
"name":"GPT-4o-mini",
|
@@ -679,86 +728,6 @@
|
|
679 |
"mgsm"
|
680 |
]
|
681 |
},
|
682 |
-
{
|
683 |
-
"id":"openai\/gpt-5",
|
684 |
-
"name":"GPT-5",
|
685 |
-
"provider_name":"OpenAI",
|
686 |
-
"cost":10.0,
|
687 |
-
"hf_id":null,
|
688 |
-
"size":null,
|
689 |
-
"type":"closed-source",
|
690 |
-
"license":null,
|
691 |
-
"creation_date":1754524800000,
|
692 |
-
"tasks":[
|
693 |
-
"translation_from",
|
694 |
-
"translation_to",
|
695 |
-
"classification",
|
696 |
-
"mmlu",
|
697 |
-
"arc",
|
698 |
-
"truthfulqa",
|
699 |
-
"mgsm"
|
700 |
-
]
|
701 |
-
},
|
702 |
-
{
|
703 |
-
"id":"openai\/gpt-5-nano",
|
704 |
-
"name":"GPT-5 Nano",
|
705 |
-
"provider_name":"OpenAI",
|
706 |
-
"cost":0.4,
|
707 |
-
"hf_id":null,
|
708 |
-
"size":null,
|
709 |
-
"type":"closed-source",
|
710 |
-
"license":null,
|
711 |
-
"creation_date":1754524800000,
|
712 |
-
"tasks":[
|
713 |
-
"translation_from",
|
714 |
-
"translation_to",
|
715 |
-
"classification",
|
716 |
-
"mmlu",
|
717 |
-
"arc",
|
718 |
-
"truthfulqa",
|
719 |
-
"mgsm"
|
720 |
-
]
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"id":"openai\/gpt-oss-120b",
|
724 |
-
"name":"gpt-oss-120b",
|
725 |
-
"provider_name":"OpenAI",
|
726 |
-
"cost":0.0,
|
727 |
-
"hf_id":"openai\/gpt-oss-120b",
|
728 |
-
"size":120412337472.0,
|
729 |
-
"type":"open-source",
|
730 |
-
"license":"Apache 2.0",
|
731 |
-
"creation_date":1754265600000,
|
732 |
-
"tasks":[
|
733 |
-
"translation_from",
|
734 |
-
"translation_to",
|
735 |
-
"classification",
|
736 |
-
"mmlu",
|
737 |
-
"arc",
|
738 |
-
"truthfulqa",
|
739 |
-
"mgsm"
|
740 |
-
]
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"id":"qwen\/qwen-2.5-coder-32b-instruct",
|
744 |
-
"name":"Qwen2.5 Coder 32B Instruct",
|
745 |
-
"provider_name":"Qwen2.5 Coder 32B Instruct (free)",
|
746 |
-
"cost":0.0,
|
747 |
-
"hf_id":"Qwen\/Qwen2.5-Coder-32B-Instruct",
|
748 |
-
"size":32763876352.0,
|
749 |
-
"type":"open-source",
|
750 |
-
"license":"Apache 2.0",
|
751 |
-
"creation_date":1730851200000,
|
752 |
-
"tasks":[
|
753 |
-
"translation_from",
|
754 |
-
"translation_to",
|
755 |
-
"classification",
|
756 |
-
"mmlu",
|
757 |
-
"arc",
|
758 |
-
"truthfulqa",
|
759 |
-
"mgsm"
|
760 |
-
]
|
761 |
-
},
|
762 |
{
|
763 |
"id":"qwen\/qwen3-235b-a22b",
|
764 |
"name":"Qwen3 235B A22B",
|
@@ -803,7 +772,7 @@
|
|
803 |
"id":"qwen\/qwen3-32b",
|
804 |
"name":"Qwen3 32B",
|
805 |
"provider_name":"Qwen",
|
806 |
-
"cost":0.
|
807 |
"hf_id":"Qwen\/Qwen3-32B",
|
808 |
"size":32762123264.0,
|
809 |
"type":"open-source",
|
@@ -818,120 +787,5 @@
|
|
818 |
"truthfulqa",
|
819 |
"mgsm"
|
820 |
]
|
821 |
-
},
|
822 |
-
{
|
823 |
-
"id":"scb10x\/llama3.1-typhoon2-70b-instruct",
|
824 |
-
"name":"Typhoon2 70B Instruct",
|
825 |
-
"provider_name":"Typhoon2 70B Instruct",
|
826 |
-
"cost":0.88,
|
827 |
-
"hf_id":"scb10x\/llama3.1-typhoon2-70b-instruct",
|
828 |
-
"size":70553706496.0,
|
829 |
-
"type":"open-source",
|
830 |
-
"license":"Llama3.1",
|
831 |
-
"creation_date":1734220800000,
|
832 |
-
"tasks":[
|
833 |
-
"translation_from",
|
834 |
-
"translation_to",
|
835 |
-
"classification",
|
836 |
-
"mmlu",
|
837 |
-
"arc",
|
838 |
-
"truthfulqa",
|
839 |
-
"mgsm"
|
840 |
-
]
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"id":"tencent\/hunyuan-a13b-instruct",
|
844 |
-
"name":"Hunyuan A13B Instruct",
|
845 |
-
"provider_name":"Tencent",
|
846 |
-
"cost":0.0,
|
847 |
-
"hf_id":"tencent\/Hunyuan-A13B-Instruct",
|
848 |
-
"size":80393183232.0,
|
849 |
-
"type":"open-source",
|
850 |
-
"license":"Other",
|
851 |
-
"creation_date":1750809600000,
|
852 |
-
"tasks":[
|
853 |
-
"translation_from",
|
854 |
-
"translation_to",
|
855 |
-
"classification",
|
856 |
-
"mmlu",
|
857 |
-
"arc",
|
858 |
-
"truthfulqa",
|
859 |
-
"mgsm"
|
860 |
-
]
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"id":"thedrummer\/anubis-pro-105b-v1",
|
864 |
-
"name":"Anubis Pro 105B V1",
|
865 |
-
"provider_name":"TheDrummer",
|
866 |
-
"cost":1.0,
|
867 |
-
"hf_id":"TheDrummer\/Anubis-Pro-105B-v1",
|
868 |
-
"size":104779882496.0,
|
869 |
-
"type":"open-source",
|
870 |
-
"license":"Other",
|
871 |
-
"creation_date":1738454400000,
|
872 |
-
"tasks":[
|
873 |
-
"translation_from",
|
874 |
-
"translation_to",
|
875 |
-
"classification",
|
876 |
-
"mmlu",
|
877 |
-
"arc",
|
878 |
-
"truthfulqa",
|
879 |
-
"mgsm"
|
880 |
-
]
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"id":"x-ai\/grok-4",
|
884 |
-
"name":"Grok 4",
|
885 |
-
"provider_name":"xAI",
|
886 |
-
"cost":15.0,
|
887 |
-
"hf_id":null,
|
888 |
-
"size":null,
|
889 |
-
"type":"closed-source",
|
890 |
-
"license":null,
|
891 |
-
"creation_date":1752019200000,
|
892 |
-
"tasks":[
|
893 |
-
"translation_from",
|
894 |
-
"translation_to",
|
895 |
-
"classification",
|
896 |
-
"mmlu",
|
897 |
-
"arc",
|
898 |
-
"truthfulqa",
|
899 |
-
"mgsm"
|
900 |
-
]
|
901 |
-
},
|
902 |
-
{
|
903 |
-
"id":"z-ai\/glm-4.5v",
|
904 |
-
"name":"GLM 4.5V",
|
905 |
-
"provider_name":"Z.AI",
|
906 |
-
"cost":1.8,
|
907 |
-
"hf_id":"zai-org\/GLM-4.5V",
|
908 |
-
"size":107710933120.0,
|
909 |
-
"type":"open-source",
|
910 |
-
"license":"Mit",
|
911 |
-
"creation_date":1754784000000,
|
912 |
-
"tasks":[
|
913 |
-
"translation_from",
|
914 |
-
"translation_to",
|
915 |
-
"classification",
|
916 |
-
"mmlu",
|
917 |
-
"arc",
|
918 |
-
"truthfulqa",
|
919 |
-
"mgsm"
|
920 |
-
]
|
921 |
-
},
|
922 |
-
{
|
923 |
-
"id":"google\/translate-v2",
|
924 |
-
"name":"Google Translate",
|
925 |
-
"provider_name":"Google",
|
926 |
-
"cost":20.0,
|
927 |
-
"hf_id":null,
|
928 |
-
"size":null,
|
929 |
-
"type":"closed-source",
|
930 |
-
"license":null,
|
931 |
-
"creation_date":null,
|
932 |
-
"tasks":[
|
933 |
-
"translation_from",
|
934 |
-
"translation_to"
|
935 |
-
]
|
936 |
}
|
937 |
]
|
|
|
20 |
]
|
21 |
},
|
22 |
{
|
23 |
+
"id":"anthropic\/claude-3.5-sonnet",
|
24 |
+
"name":"Claude 3.5 Sonnet",
|
25 |
"provider_name":"Anthropic",
|
26 |
+
"cost":15.0,
|
27 |
"hf_id":null,
|
28 |
"size":null,
|
29 |
"type":"closed-source",
|
30 |
"license":null,
|
31 |
+
"creation_date":1729555200000,
|
32 |
"tasks":[
|
33 |
"translation_from",
|
34 |
"translation_to",
|
|
|
79 |
"mgsm"
|
80 |
]
|
81 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
{
|
83 |
"id":"deepseek\/deepseek-chat",
|
84 |
"name":"DeepSeek V3",
|
85 |
"provider_name":"DeepSeek",
|
86 |
+
"cost":0.0,
|
87 |
"hf_id":"deepseek-ai\/DeepSeek-V3",
|
88 |
"size":684531386000.0,
|
89 |
"type":"open-source",
|
|
|
119 |
"mgsm"
|
120 |
]
|
121 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
{
|
123 |
"id":"deepseek\/deepseek-r1",
|
124 |
"name":"R1",
|
|
|
140 |
]
|
141 |
},
|
142 |
{
|
143 |
+
"id":"deepseek\/deepseek-r1-0528",
|
144 |
+
"name":"R1 0528",
|
145 |
"provider_name":"DeepSeek",
|
146 |
"cost":0.0,
|
147 |
+
"hf_id":"deepseek-ai\/DeepSeek-R1-0528",
|
148 |
+
"size":684531386000.0,
|
149 |
"type":"open-source",
|
150 |
"license":"Mit",
|
151 |
+
"creation_date":1748390400000.0,
|
152 |
"tasks":[
|
153 |
"translation_from",
|
154 |
"translation_to",
|
|
|
220 |
]
|
221 |
},
|
222 |
{
|
223 |
+
"id":"google\/gemini-2.5-flash-lite-preview-06-17",
|
224 |
+
"name":"Gemini 2.5 Flash Lite Preview 06-17",
|
225 |
"provider_name":"Google",
|
226 |
+
"cost":0.4,
|
227 |
+
"hf_id":null,
|
228 |
+
"size":null,
|
229 |
+
"type":"closed-source",
|
230 |
+
"license":null,
|
231 |
+
"creation_date":1750118400000.0,
|
232 |
+
"tasks":[
|
233 |
+
"translation_from",
|
234 |
+
"translation_to",
|
235 |
+
"classification",
|
236 |
+
"mmlu",
|
237 |
+
"mgsm"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"id":"google\/gemini-2.5-flash-preview",
|
242 |
+
"name":"Gemini 2.5 Flash Preview 04-17",
|
243 |
+
"provider_name":"Google",
|
244 |
+
"cost":0.6,
|
245 |
+
"hf_id":null,
|
246 |
+
"size":null,
|
247 |
+
"type":"closed-source",
|
248 |
+
"license":null,
|
249 |
+
"creation_date":1744848000000.0,
|
250 |
+
"tasks":[
|
251 |
+
"translation_from",
|
252 |
+
"translation_to",
|
253 |
+
"classification",
|
254 |
+
"mmlu",
|
255 |
+
"mgsm"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"id":"google\/gemini-2.5-flash-preview-05-20",
|
260 |
+
"name":"Gemini 2.5 Flash Preview 05-20",
|
261 |
+
"provider_name":"Google",
|
262 |
+
"cost":0.6,
|
263 |
+
"hf_id":null,
|
264 |
+
"size":null,
|
265 |
+
"type":"closed-source",
|
266 |
+
"license":null,
|
267 |
+
"creation_date":1747699200000.0,
|
268 |
+
"tasks":[
|
269 |
+
"translation_from",
|
270 |
+
"translation_to",
|
271 |
+
"classification",
|
272 |
+
"mmlu",
|
273 |
+
"mgsm"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"id":"google\/gemini-2.5-pro",
|
278 |
+
"name":"Gemini 2.5 Pro",
|
279 |
+
"provider_name":"Google",
|
280 |
+
"cost":10.0,
|
281 |
+
"hf_id":null,
|
282 |
+
"size":null,
|
283 |
+
"type":"closed-source",
|
284 |
+
"license":null,
|
285 |
+
"creation_date":1750118400000,
|
286 |
+
"tasks":[
|
287 |
+
"translation_from",
|
288 |
+
"translation_to",
|
289 |
+
"classification",
|
290 |
+
"mmlu",
|
291 |
+
"arc",
|
292 |
+
"truthfulqa",
|
293 |
+
"mgsm"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"id":"google\/gemini-2.5-pro-preview",
|
298 |
+
"name":"Gemini 2.5 Pro Preview 06-05",
|
299 |
+
"provider_name":"Google",
|
300 |
+
"cost":10.0,
|
301 |
+
"hf_id":null,
|
302 |
+
"size":null,
|
303 |
+
"type":"closed-source",
|
304 |
+
"license":null,
|
305 |
+
"creation_date":1749081600000.0,
|
306 |
+
"tasks":[
|
307 |
+
"translation_from",
|
308 |
+
"translation_to",
|
309 |
+
"classification",
|
310 |
+
"mmlu",
|
311 |
+
"mgsm"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"id":"google\/gemini-2.5-pro-preview-05-06",
|
316 |
+
"name":"Gemini 2.5 Pro Preview 05-06",
|
317 |
+
"provider_name":"Google",
|
318 |
+
"cost":10.0,
|
319 |
+
"hf_id":null,
|
320 |
+
"size":null,
|
321 |
+
"type":"closed-source",
|
322 |
+
"license":null,
|
323 |
+
"creation_date":1746576000000.0,
|
324 |
+
"tasks":[
|
325 |
+
"translation_from",
|
326 |
+
"translation_to",
|
327 |
+
"classification",
|
328 |
+
"mmlu",
|
329 |
+
"mgsm"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"id":"google\/gemini-flash-1.5",
|
334 |
+
"name":"Gemini 1.5 Flash ",
|
335 |
+
"provider_name":"Google",
|
336 |
+
"cost":0.3,
|
337 |
+
"hf_id":null,
|
338 |
+
"size":null,
|
339 |
+
"type":"closed-source",
|
340 |
+
"license":null,
|
341 |
+
"creation_date":1715644800000,
|
342 |
+
"tasks":[
|
343 |
+
"translation_from",
|
344 |
+
"translation_to",
|
345 |
+
"classification",
|
346 |
+
"mmlu",
|
347 |
+
"arc",
|
348 |
+
"truthfulqa",
|
349 |
+
"mgsm"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"id":"google\/gemini-flash-1.5-8b",
|
354 |
+
"name":"Gemini 1.5 Flash 8B",
|
355 |
+
"provider_name":"Google",
|
356 |
+
"cost":0.15,
|
357 |
+
"hf_id":null,
|
358 |
+
"size":null,
|
359 |
+
"type":"closed-source",
|
360 |
+
"license":null,
|
361 |
+
"creation_date":1727913600000,
|
362 |
"tasks":[
|
363 |
"translation_from",
|
364 |
"translation_to",
|
|
|
389 |
"mgsm"
|
390 |
]
|
391 |
},
|
392 |
+
{
|
393 |
+
"id":"google\/translate-v2",
|
394 |
+
"name":"Google Translate",
|
395 |
+
"provider_name":"Google",
|
396 |
+
"cost":20.0,
|
397 |
+
"hf_id":null,
|
398 |
+
"size":null,
|
399 |
+
"type":"closed-source",
|
400 |
+
"license":null,
|
401 |
+
"creation_date":null,
|
402 |
+
"tasks":[
|
403 |
+
"translation_from",
|
404 |
+
"translation_to"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"id":"gryphe\/mythomax-l2-13b",
|
409 |
+
"name":"MythoMax 13B",
|
410 |
+
"provider_name":"MythoMax 13B",
|
411 |
+
"cost":0.07,
|
412 |
+
"hf_id":"Gryphe\/MythoMax-L2-13b",
|
413 |
+
"size":null,
|
414 |
+
"type":"open-source",
|
415 |
+
"license":"Other",
|
416 |
+
"creation_date":1691625600000,
|
417 |
+
"tasks":[
|
418 |
+
"translation_from",
|
419 |
+
"translation_to",
|
420 |
+
"classification",
|
421 |
+
"mmlu",
|
422 |
+
"arc",
|
423 |
+
"truthfulqa",
|
424 |
+
"mgsm"
|
425 |
+
]
|
426 |
+
},
|
427 |
{
|
428 |
"id":"meta-llama\/llama-3-70b-instruct",
|
429 |
"name":"Llama 3 70B Instruct",
|
|
|
464 |
"mgsm"
|
465 |
]
|
466 |
},
|
467 |
+
{
|
468 |
+
"id":"meta-llama\/llama-3.1-8b-instruct",
|
469 |
+
"name":"Llama 3.1 8B Instruct",
|
470 |
+
"provider_name":"Meta",
|
471 |
+
"cost":0.0,
|
472 |
+
"hf_id":"meta-llama\/Llama-3.1-8B-Instruct",
|
473 |
+
"size":8030261248.0,
|
474 |
+
"type":"open-source",
|
475 |
+
"license":"Llama3.1",
|
476 |
+
"creation_date":1721260800000.0,
|
477 |
+
"tasks":null
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"id":"meta-llama\/llama-3.2-1b-instruct",
|
481 |
+
"name":"Llama 3.2 1B Instruct",
|
482 |
+
"provider_name":"Meta",
|
483 |
+
"cost":0.0,
|
484 |
+
"hf_id":"meta-llama\/Llama-3.2-1B-Instruct",
|
485 |
+
"size":1235814400.0,
|
486 |
+
"type":"open-source",
|
487 |
+
"license":"Llama3.2",
|
488 |
+
"creation_date":1726617600000.0,
|
489 |
+
"tasks":null
|
490 |
+
},
|
491 |
{
|
492 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
493 |
"name":"Llama 3.3 70B Instruct",
|
|
|
568 |
"mgsm"
|
569 |
]
|
570 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
{
|
572 |
"id":"mistralai\/mistral-nemo",
|
573 |
"name":"Mistral Nemo",
|
|
|
629 |
]
|
630 |
},
|
631 |
{
|
632 |
+
"id":"openai\/gpt-3.5-turbo-0613",
|
633 |
+
"name":"GPT-3.5 Turbo (older v0613)",
|
634 |
+
"provider_name":"OpenAI",
|
635 |
+
"cost":2.0,
|
636 |
+
"hf_id":null,
|
637 |
"size":null,
|
638 |
+
"type":"closed-source",
|
639 |
+
"license":null,
|
640 |
+
"creation_date":1706140800000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
"tasks":[
|
642 |
"translation_from",
|
643 |
"translation_to",
|
|
|
708 |
"mgsm"
|
709 |
]
|
710 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
{
|
712 |
"id":"openai\/gpt-4o-mini",
|
713 |
"name":"GPT-4o-mini",
|
|
|
728 |
"mgsm"
|
729 |
]
|
730 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
{
|
732 |
"id":"qwen\/qwen3-235b-a22b",
|
733 |
"name":"Qwen3 235B A22B",
|
|
|
772 |
"id":"qwen\/qwen3-32b",
|
773 |
"name":"Qwen3 32B",
|
774 |
"provider_name":"Qwen",
|
775 |
+
"cost":0.0,
|
776 |
"hf_id":"Qwen\/Qwen3-32B",
|
777 |
"size":32762123264.0,
|
778 |
"type":"open-source",
|
|
|
787 |
"truthfulqa",
|
788 |
"mgsm"
|
789 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
}
|
791 |
]
|
pyproject.toml
CHANGED
@@ -44,6 +44,3 @@ dev = [
|
|
44 |
"scipy>=1.16.0",
|
45 |
"seaborn>=0.13.2",
|
46 |
]
|
47 |
-
|
48 |
-
[tool.uv]
|
49 |
-
package = true
|
|
|
44 |
"scipy>=1.16.0",
|
45 |
"seaborn>=0.13.2",
|
46 |
]
|
|
|
|
|
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|