David Pomerenke
commited on
Commit
·
4d13673
1
Parent(s):
92d8154
Add Dockerfile
Browse files- .dockerignore +5 -0
- Dockerfile +17 -0
- README.md +37 -0
- data/datasets.json +0 -484
- evals/backend.py +11 -11
- evals/countries.py +0 -15
- evals/main.py +12 -2
- frontend/public/README.md +0 -35
- frontend/src/App.js +6 -4
- frontend/src/components/AutoComplete.js +2 -2
- pyproject.toml +2 -0
- results.json +0 -0
- uv.lock +4 -0
.dockerignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.git
|
| 2 |
+
.cache
|
| 3 |
+
.venv
|
| 4 |
+
.env
|
| 5 |
+
frontend/node_modules
|
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM node:20-alpine AS build
|
| 2 |
+
WORKDIR /frontend
|
| 3 |
+
COPY frontend/package.json frontend/package-lock.json ./
|
| 4 |
+
RUN npm ci
|
| 5 |
+
COPY frontend/public/ public/
|
| 6 |
+
COPY frontend/src/ src/
|
| 7 |
+
RUN npm run build
|
| 8 |
+
|
| 9 |
+
FROM --platform=linux/amd64 ghcr.io/astral-sh/uv:python3.12-bookworm
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
COPY pyproject.toml uv.lock ./
|
| 12 |
+
RUN uv sync --frozen --no-dev
|
| 13 |
+
COPY evals/ evals/
|
| 14 |
+
COPY --from=build /frontend/build /app/frontend/build
|
| 15 |
+
COPY results.json datasets.json ./
|
| 16 |
+
EXPOSE 8000
|
| 17 |
+
CMD ["uv", "run", "--no-dev", "evals/backend.py"]
|
README.md
CHANGED
|
@@ -1,3 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
[](https://huggingface.co/spaces/datenlabor-bmz/ai-language-monitor)
|
| 2 |
|
| 3 |
# AI Language Monitor 🌍
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: AI Language Monitor
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: static
|
| 7 |
+
license: cc-by-sa-4.0
|
| 8 |
+
short_description: Evaluating LLM performance across all human languages.
|
| 9 |
+
datasets:
|
| 10 |
+
- openlanguagedata/flores_plus
|
| 11 |
+
- google/fleurs
|
| 12 |
+
- mozilla-foundation/common_voice_1_0
|
| 13 |
+
models:
|
| 14 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
| 15 |
+
- mistralai/Mistral-Small-24B-Instruct-2501
|
| 16 |
+
- deepseek-ai/DeepSeek-V3
|
| 17 |
+
- microsoft/phi-4
|
| 18 |
+
- openai/whisper-large-v3
|
| 19 |
+
- google/gemma-3-27b-it
|
| 20 |
+
tags:
|
| 21 |
+
- leaderboard
|
| 22 |
+
- submission:manual
|
| 23 |
+
- test:public
|
| 24 |
+
- judge:auto
|
| 25 |
+
- modality:text
|
| 26 |
+
- modality:artefacts
|
| 27 |
+
- eval:generation
|
| 28 |
+
- language:English
|
| 29 |
+
- language:German
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
<!--
|
| 33 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 34 |
+
For tag meaning, see https://huggingface.co/spaces/leaderboards/LeaderboardsExplorer
|
| 35 |
+
-->
|
| 36 |
+
|
| 37 |
+
|
| 38 |
[](https://huggingface.co/spaces/datenlabor-bmz/ai-language-monitor)
|
| 39 |
|
| 40 |
# AI Language Monitor 🌍
|
data/datasets.json
DELETED
|
@@ -1,484 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"name": "FLORES+",
|
| 4 |
-
"author": "Meta",
|
| 5 |
-
"author_url": "https://ai.meta.com",
|
| 6 |
-
"url": "https://huggingface.co/datasets/openlanguagedata/flores_plus",
|
| 7 |
-
"n_languages": 200,
|
| 8 |
-
"tasks": [
|
| 9 |
-
"translation",
|
| 10 |
-
"classification",
|
| 11 |
-
"language_modeling"
|
| 12 |
-
],
|
| 13 |
-
"parallel": true,
|
| 14 |
-
"base": "FLORES",
|
| 15 |
-
"implemented": true
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"name": "FLEURS",
|
| 19 |
-
"author": "Meta",
|
| 20 |
-
"author_url": "https://ai.meta.com",
|
| 21 |
-
"url": "https://huggingface.co/datasets/google/fleurs",
|
| 22 |
-
"n_languages": 102,
|
| 23 |
-
"tasks": [
|
| 24 |
-
"speech_recognition"
|
| 25 |
-
],
|
| 26 |
-
"parallel": true,
|
| 27 |
-
"base": "FLORES",
|
| 28 |
-
"implemented": true
|
| 29 |
-
},
|
| 30 |
-
{
|
| 31 |
-
"name": "CommonVoice",
|
| 32 |
-
"author": "Mozilla",
|
| 33 |
-
"author_url": "https://mozilla.ai",
|
| 34 |
-
"url": "https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0",
|
| 35 |
-
"n_languages": 124,
|
| 36 |
-
"tasks": [
|
| 37 |
-
"speech_recognition"
|
| 38 |
-
],
|
| 39 |
-
"parallel": null
|
| 40 |
-
},
|
| 41 |
-
{
|
| 42 |
-
"name": "MMMLU",
|
| 43 |
-
"author": "OpenAI",
|
| 44 |
-
"author_url": "https://openai.com",
|
| 45 |
-
"url": "https://huggingface.co/datasets/openai/MMMLU",
|
| 46 |
-
"n_languages": "14",
|
| 47 |
-
"tasks": [
|
| 48 |
-
"question_answering"
|
| 49 |
-
],
|
| 50 |
-
"parallel": true,
|
| 51 |
-
"base": "MMLU"
|
| 52 |
-
},
|
| 53 |
-
{
|
| 54 |
-
"name": "AfriMMLU",
|
| 55 |
-
"author": "Masakhane",
|
| 56 |
-
"author_url": "https://www.masakhane.io",
|
| 57 |
-
"url": "https://huggingface.co/datasets/masakhane/afrimmlu",
|
| 58 |
-
"n_languages": "17",
|
| 59 |
-
"tasks": [
|
| 60 |
-
"question_answering"
|
| 61 |
-
],
|
| 62 |
-
"parallel": true,
|
| 63 |
-
"base": "MMLU"
|
| 64 |
-
},
|
| 65 |
-
{
|
| 66 |
-
"name": "Okapi MMLU",
|
| 67 |
-
"author": "Academic",
|
| 68 |
-
"author_url": null,
|
| 69 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_mmlu",
|
| 70 |
-
"n_languages": 16,
|
| 71 |
-
"tasks": [
|
| 72 |
-
"question_answering"
|
| 73 |
-
],
|
| 74 |
-
"parallel": true,
|
| 75 |
-
"base": "MMLU"
|
| 76 |
-
},
|
| 77 |
-
{
|
| 78 |
-
"name": "MMLU-X",
|
| 79 |
-
"author": "OpenGPT-X",
|
| 80 |
-
"author_url": null,
|
| 81 |
-
"url": "https://huggingface.co/datasets/openGPT-X/mmlux",
|
| 82 |
-
"n_languages": 20,
|
| 83 |
-
"tasks": [
|
| 84 |
-
"question_answering"
|
| 85 |
-
],
|
| 86 |
-
"parallel": true,
|
| 87 |
-
"base": "MMLU"
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"name": "Global MMLU",
|
| 91 |
-
"author": "Cohere",
|
| 92 |
-
"author_url": "https://cohere.com",
|
| 93 |
-
"url": "https://huggingface.co/datasets/CohereForAI/Global-MMLU",
|
| 94 |
-
"n_languages": 42,
|
| 95 |
-
"tasks": [
|
| 96 |
-
"question_answering"
|
| 97 |
-
],
|
| 98 |
-
"parallel": true,
|
| 99 |
-
"base": "MMLU"
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
"name": "MGSM",
|
| 103 |
-
"author": "Google",
|
| 104 |
-
"author_url": "https://google.com",
|
| 105 |
-
"url": "https://huggingface.co/datasets/juletxara/mgsm",
|
| 106 |
-
"n_languages": 10,
|
| 107 |
-
"tasks": [
|
| 108 |
-
"math"
|
| 109 |
-
],
|
| 110 |
-
"parallel": true,
|
| 111 |
-
"base": "MGSM"
|
| 112 |
-
},
|
| 113 |
-
{
|
| 114 |
-
"name": "AfriMGSM",
|
| 115 |
-
"author": "Masakhane",
|
| 116 |
-
"author_url": "https://www.masakhane.io",
|
| 117 |
-
"url": "https://huggingface.co/datasets/masakhane/afrimgsm",
|
| 118 |
-
"n_languages": 18,
|
| 119 |
-
"tasks": [
|
| 120 |
-
"math"
|
| 121 |
-
],
|
| 122 |
-
"parallel": true,
|
| 123 |
-
"base": "MGSM"
|
| 124 |
-
},
|
| 125 |
-
{
|
| 126 |
-
"name": "GSM8K-X",
|
| 127 |
-
"author": "OpenGPT-X",
|
| 128 |
-
"author_url": null,
|
| 129 |
-
"url": "https://huggingface.co/datasets/openGPT-X/gsm8kx",
|
| 130 |
-
"n_languages": 20,
|
| 131 |
-
"tasks": [
|
| 132 |
-
"math"
|
| 133 |
-
],
|
| 134 |
-
"parallel": true,
|
| 135 |
-
"base": "MGSM"
|
| 136 |
-
},
|
| 137 |
-
{
|
| 138 |
-
"name": "Okapi ARC Challenge",
|
| 139 |
-
"author": "Academic",
|
| 140 |
-
"author_url": null,
|
| 141 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_arc_challenge",
|
| 142 |
-
"n_languages": 31,
|
| 143 |
-
"tasks": [
|
| 144 |
-
"question_answering"
|
| 145 |
-
],
|
| 146 |
-
"parallel": true,
|
| 147 |
-
"base": "AI2 ARC"
|
| 148 |
-
},
|
| 149 |
-
{
|
| 150 |
-
"name": "Uhuru ARC Easy",
|
| 151 |
-
"author": "Masakhane",
|
| 152 |
-
"author_url": "https://www.masakhane.io",
|
| 153 |
-
"url": "https://huggingface.co/datasets/masakhane/uhura-arc-easy",
|
| 154 |
-
"n_languages": 6,
|
| 155 |
-
"tasks": [
|
| 156 |
-
"question_answering"
|
| 157 |
-
],
|
| 158 |
-
"parallel": true,
|
| 159 |
-
"base": "AI2 ARC"
|
| 160 |
-
},
|
| 161 |
-
{
|
| 162 |
-
"name": "Arc-X",
|
| 163 |
-
"author": "OpenGPT-X",
|
| 164 |
-
"author_url": null,
|
| 165 |
-
"url": "https://huggingface.co/datasets/openGPT-X/arcx",
|
| 166 |
-
"n_languages": 20,
|
| 167 |
-
"tasks": [
|
| 168 |
-
"question_answering"
|
| 169 |
-
],
|
| 170 |
-
"parallel": true,
|
| 171 |
-
"base": "AI2 ARC"
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"name": "Okapi TruthfulQA",
|
| 175 |
-
"author": "Academic",
|
| 176 |
-
"author_url": null,
|
| 177 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_truthfulqa/tree/main/data",
|
| 178 |
-
"n_languages": 31,
|
| 179 |
-
"tasks": [
|
| 180 |
-
"question_answering"
|
| 181 |
-
],
|
| 182 |
-
"parallel": true,
|
| 183 |
-
"base": "TruthfulQA"
|
| 184 |
-
},
|
| 185 |
-
{
|
| 186 |
-
"name": "Uhura TruthfulQA",
|
| 187 |
-
"author": "Masakhane",
|
| 188 |
-
"author_url": "https://www.masakhane.io",
|
| 189 |
-
"url": "https://huggingface.co/datasets/masakhane/uhura-truthfulqa",
|
| 190 |
-
"n_languages": 6,
|
| 191 |
-
"tasks": [
|
| 192 |
-
"question_answering"
|
| 193 |
-
],
|
| 194 |
-
"parallel": true,
|
| 195 |
-
"base": "TruthfulQA"
|
| 196 |
-
},
|
| 197 |
-
{
|
| 198 |
-
"name": "TruthfulQA-X",
|
| 199 |
-
"author": "OpenGPT-X",
|
| 200 |
-
"author_url": null,
|
| 201 |
-
"url": "https://huggingface.co/datasets/openGPT-X/truthfulqax",
|
| 202 |
-
"n_languages": 20,
|
| 203 |
-
"tasks": [
|
| 204 |
-
"question_answering"
|
| 205 |
-
],
|
| 206 |
-
"parallel": true,
|
| 207 |
-
"base": "TruthfulQA"
|
| 208 |
-
},
|
| 209 |
-
{
|
| 210 |
-
"name": "XNLI",
|
| 211 |
-
"author": "Meta",
|
| 212 |
-
"author_url": "https://ai.meta.com",
|
| 213 |
-
"url": "https://huggingface.co/datasets/facebook/xnli",
|
| 214 |
-
"n_languages": 14,
|
| 215 |
-
"tasks": [
|
| 216 |
-
"classification"
|
| 217 |
-
],
|
| 218 |
-
"parallel": true,
|
| 219 |
-
"base": "XNLI"
|
| 220 |
-
},
|
| 221 |
-
{
|
| 222 |
-
"name": "AfriXNLI",
|
| 223 |
-
"author": "Masakhane",
|
| 224 |
-
"author_url": "https://www.masakhane.io",
|
| 225 |
-
"url": "https://huggingface.co/datasets/masakhane/afrixnli",
|
| 226 |
-
"n_languages": 18,
|
| 227 |
-
"tasks": [
|
| 228 |
-
"classification"
|
| 229 |
-
],
|
| 230 |
-
"parallel": true,
|
| 231 |
-
"base": "XNLI"
|
| 232 |
-
},
|
| 233 |
-
{
|
| 234 |
-
"name": "Okapi HellaSwag",
|
| 235 |
-
"author": "Academic",
|
| 236 |
-
"author_url": null,
|
| 237 |
-
"url": "https://huggingface.co/datasets/jon-tow/okapi_hellaswag",
|
| 238 |
-
"n_languages": 31,
|
| 239 |
-
"tasks": [
|
| 240 |
-
"question_answering"
|
| 241 |
-
],
|
| 242 |
-
"parallel": true,
|
| 243 |
-
"base": "HellaSwag"
|
| 244 |
-
},
|
| 245 |
-
{
|
| 246 |
-
"name": "HellaSwag-X",
|
| 247 |
-
"author": "OpenGPT-X",
|
| 248 |
-
"author_url": null,
|
| 249 |
-
"url": "https://huggingface.co/datasets/openGPT-X/hellaswagx",
|
| 250 |
-
"n_languages": 20,
|
| 251 |
-
"tasks": [
|
| 252 |
-
"question_answering"
|
| 253 |
-
],
|
| 254 |
-
"parallel": true,
|
| 255 |
-
"base": "HellaSwag"
|
| 256 |
-
},
|
| 257 |
-
{
|
| 258 |
-
"name": "WikiANN / PAN-X",
|
| 259 |
-
"author": "Academic",
|
| 260 |
-
"author_url": null,
|
| 261 |
-
"url": "https://huggingface.co/datasets/unimelb-nlp/wikiann",
|
| 262 |
-
"n_languages": 176,
|
| 263 |
-
"tasks": [
|
| 264 |
-
"ner"
|
| 265 |
-
],
|
| 266 |
-
"parallel": false
|
| 267 |
-
},
|
| 268 |
-
{
|
| 269 |
-
"name": "MSVAMP",
|
| 270 |
-
"author": "Microsoft",
|
| 271 |
-
"author_url": "https://microsoft.ai",
|
| 272 |
-
"url": "https://huggingface.co/datasets/Mathoctopus/MSVAMP",
|
| 273 |
-
"n_languages": 10,
|
| 274 |
-
"tasks": [
|
| 275 |
-
"math"
|
| 276 |
-
],
|
| 277 |
-
"parallel": true
|
| 278 |
-
},
|
| 279 |
-
{
|
| 280 |
-
"name": "XLSUM",
|
| 281 |
-
"author": "Academic",
|
| 282 |
-
"author_url": null,
|
| 283 |
-
"url": "https://huggingface.co/datasets/csebuetnlp/xlsum",
|
| 284 |
-
"n_languages": 45,
|
| 285 |
-
"tasks": [
|
| 286 |
-
"summarization"
|
| 287 |
-
],
|
| 288 |
-
"parallel": true
|
| 289 |
-
},
|
| 290 |
-
{
|
| 291 |
-
"name": "SEA-IFEVAL",
|
| 292 |
-
"author": "AI Singapore",
|
| 293 |
-
"author_url": "https://aisingapore.org",
|
| 294 |
-
"url": "https://huggingface.co/datasets/aisingapore/instruction_following-ifeval",
|
| 295 |
-
"n_languages": 7,
|
| 296 |
-
"tasks": [
|
| 297 |
-
"instruction_following"
|
| 298 |
-
],
|
| 299 |
-
"parallel": true,
|
| 300 |
-
"base": "IFEVAL"
|
| 301 |
-
},
|
| 302 |
-
{
|
| 303 |
-
"name": "XTREME",
|
| 304 |
-
"author": "Google",
|
| 305 |
-
"author_url": "https://google.com",
|
| 306 |
-
"url": "https://huggingface.co/datasets/google/xtreme",
|
| 307 |
-
"n_languages": 40,
|
| 308 |
-
"tasks": [
|
| 309 |
-
"translation",
|
| 310 |
-
"classification",
|
| 311 |
-
"question_answering",
|
| 312 |
-
"ner"
|
| 313 |
-
],
|
| 314 |
-
"parallel": null
|
| 315 |
-
},
|
| 316 |
-
{
|
| 317 |
-
"name": "XGLUE",
|
| 318 |
-
"author": "Microsoft",
|
| 319 |
-
"author_url": "https://microsoft.ai",
|
| 320 |
-
"url": "https://huggingface.co/datasets/microsoft/xglue",
|
| 321 |
-
"n_languages": 18,
|
| 322 |
-
"tasks": [
|
| 323 |
-
"pos"
|
| 324 |
-
],
|
| 325 |
-
"parallel": null,
|
| 326 |
-
"base": "GLUE"
|
| 327 |
-
},
|
| 328 |
-
{
|
| 329 |
-
"name": "IndicGLUE",
|
| 330 |
-
"author": "AI4Bharat",
|
| 331 |
-
"author_url": "https://models.ai4bharat.org",
|
| 332 |
-
"url": "https://huggingface.co/datasets/ai4bharat/indic_glue",
|
| 333 |
-
"n_languages": 11,
|
| 334 |
-
"tasks": [
|
| 335 |
-
"question_answering"
|
| 336 |
-
],
|
| 337 |
-
"parallel": null,
|
| 338 |
-
"base": "GLUE"
|
| 339 |
-
},
|
| 340 |
-
{
|
| 341 |
-
"name": "Opus Gnome",
|
| 342 |
-
"author": "Helsinki NLP",
|
| 343 |
-
"author_url": null,
|
| 344 |
-
"url": "https://huggingface.co/datasets/Helsinki-NLP/opus_gnome",
|
| 345 |
-
"n_languages": 187,
|
| 346 |
-
"tasks": [
|
| 347 |
-
"translation"
|
| 348 |
-
],
|
| 349 |
-
"parallel": true
|
| 350 |
-
},
|
| 351 |
-
{
|
| 352 |
-
"name": "Opus Paracrawl",
|
| 353 |
-
"author": "Helsinki NLP",
|
| 354 |
-
"author_url": null,
|
| 355 |
-
"url": "https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl",
|
| 356 |
-
"n_languages": 43,
|
| 357 |
-
"tasks": [
|
| 358 |
-
"translation"
|
| 359 |
-
],
|
| 360 |
-
"parallel": false
|
| 361 |
-
},
|
| 362 |
-
{
|
| 363 |
-
"name": "CCAligned",
|
| 364 |
-
"author": "Meta",
|
| 365 |
-
"author_url": "https://ai.meta.com",
|
| 366 |
-
"url": "https://huggingface.co/datasets/ahelk/ccaligned_multilingual",
|
| 367 |
-
"n_languages": 137,
|
| 368 |
-
"tasks": [
|
| 369 |
-
"translation"
|
| 370 |
-
],
|
| 371 |
-
"parallel": false
|
| 372 |
-
},
|
| 373 |
-
{
|
| 374 |
-
"name": "OPUS Collection",
|
| 375 |
-
"author": "Helsinki NLP",
|
| 376 |
-
"author_url": null,
|
| 377 |
-
"url": "https://opus.nlpl.eu",
|
| 378 |
-
"n_languages": 747,
|
| 379 |
-
"tasks": [
|
| 380 |
-
"translation"
|
| 381 |
-
],
|
| 382 |
-
"parallel": false
|
| 383 |
-
},
|
| 384 |
-
{
|
| 385 |
-
"name": "MasakhaNER",
|
| 386 |
-
"author": "Masakhane",
|
| 387 |
-
"author_url": "https://www.masakhane.io",
|
| 388 |
-
"url": "https://huggingface.co/datasets/masakhane/masakhaner",
|
| 389 |
-
"n_languages": 10,
|
| 390 |
-
"tasks": [
|
| 391 |
-
"ner"
|
| 392 |
-
],
|
| 393 |
-
"parallel": null
|
| 394 |
-
},
|
| 395 |
-
{
|
| 396 |
-
"name": "Multilingual Sentiments",
|
| 397 |
-
"author": "Academic",
|
| 398 |
-
"author_url": null,
|
| 399 |
-
"url": "https://huggingface.co/datasets/tyqiangz/multilingual-sentiments",
|
| 400 |
-
"n_languages": 12,
|
| 401 |
-
"tasks": [
|
| 402 |
-
"sentiment_analysis"
|
| 403 |
-
],
|
| 404 |
-
"parallel": null
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"name": "CulturaX",
|
| 408 |
-
"author": "Academic",
|
| 409 |
-
"author_url": null,
|
| 410 |
-
"url": "https://huggingface.co/datasets/uonlp/CulturaX",
|
| 411 |
-
"n_languages": 167,
|
| 412 |
-
"tasks": [
|
| 413 |
-
"language_modeling"
|
| 414 |
-
],
|
| 415 |
-
"parallel": false
|
| 416 |
-
},
|
| 417 |
-
{
|
| 418 |
-
"name": "Tülu 3 SFT Mixture",
|
| 419 |
-
"author": "AllenAI",
|
| 420 |
-
"author_url": "https://allenai.org",
|
| 421 |
-
"url": "https://huggingface.co/datasets/allenai/tulu-3-sft-mixture",
|
| 422 |
-
"n_languages": 70,
|
| 423 |
-
"tasks": [
|
| 424 |
-
"instruction_following"
|
| 425 |
-
],
|
| 426 |
-
"parallel": false
|
| 427 |
-
},
|
| 428 |
-
{
|
| 429 |
-
"name": "xP3",
|
| 430 |
-
"author": "BigScience",
|
| 431 |
-
"author_url": "https://bigscience.huggingface.co",
|
| 432 |
-
"url": "https://huggingface.co/datasets/bigscience/xP3",
|
| 433 |
-
"n_languages": 46,
|
| 434 |
-
"tasks": [
|
| 435 |
-
"instruction_following"
|
| 436 |
-
],
|
| 437 |
-
"parallel": false
|
| 438 |
-
},
|
| 439 |
-
{
|
| 440 |
-
"name": "Aya",
|
| 441 |
-
"author": "Cohere",
|
| 442 |
-
"author_url": "https://cohere.com",
|
| 443 |
-
"url": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
|
| 444 |
-
"n_languages": 65,
|
| 445 |
-
"tasks": [
|
| 446 |
-
"instruction_following"
|
| 447 |
-
],
|
| 448 |
-
"parallel": null
|
| 449 |
-
},
|
| 450 |
-
{
|
| 451 |
-
"name": "Lanfrica",
|
| 452 |
-
"author": "Lanfrica",
|
| 453 |
-
"author_url": "https://lanfrica.com",
|
| 454 |
-
"url": "https://lanfrica.com/records?language=yor&task=machine%20translation",
|
| 455 |
-
"n_languages": 2200,
|
| 456 |
-
"tasks": [
|
| 457 |
-
"datasets"
|
| 458 |
-
],
|
| 459 |
-
"parallel": null
|
| 460 |
-
},
|
| 461 |
-
{
|
| 462 |
-
"name": "HuggingFace Languages",
|
| 463 |
-
"author": "HuggingFace",
|
| 464 |
-
"author_url": "https://huggingface.co",
|
| 465 |
-
"url": "https://huggingface.co/languages",
|
| 466 |
-
"n_languages": 4680,
|
| 467 |
-
"tasks": [
|
| 468 |
-
"datasets",
|
| 469 |
-
"models"
|
| 470 |
-
],
|
| 471 |
-
"parallel": null
|
| 472 |
-
},
|
| 473 |
-
{
|
| 474 |
-
"name": "HuggingFace Multilingual Datasets",
|
| 475 |
-
"author": "HuggingFace",
|
| 476 |
-
"author_url": "https://huggingface.co",
|
| 477 |
-
"url": "https://huggingface.co/datasets?other=multilinguality:multilingual",
|
| 478 |
-
"n_languages": 2012,
|
| 479 |
-
"tasks": [
|
| 480 |
-
"datasets"
|
| 481 |
-
],
|
| 482 |
-
"parallel": false
|
| 483 |
-
}
|
| 484 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evals/backend.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import json
|
| 2 |
-
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import uvicorn
|
|
@@ -9,10 +9,14 @@ from fastapi.middleware.gzip import GZipMiddleware
|
|
| 9 |
from fastapi.responses import JSONResponse
|
| 10 |
from fastapi.staticfiles import StaticFiles
|
| 11 |
|
| 12 |
-
from languages import languages
|
| 13 |
-
from models import models
|
| 14 |
from countries import make_country_table
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def mean(lst):
|
| 17 |
return sum(lst) / len(lst) if lst else None
|
| 18 |
|
|
@@ -30,7 +34,6 @@ def make_model_table(df, models):
|
|
| 30 |
df["average"] = df[task_metrics].mean(axis=1)
|
| 31 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
| 32 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
| 33 |
-
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
| 34 |
df["rank"] = df.index + 1
|
| 35 |
df = df[
|
| 36 |
[
|
|
@@ -85,9 +88,6 @@ app = FastAPI()
|
|
| 85 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
| 86 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
| 87 |
|
| 88 |
-
with open("results.json", "r") as f:
|
| 89 |
-
results = pd.DataFrame(json.load(f))
|
| 90 |
-
|
| 91 |
|
| 92 |
def serialize(df):
|
| 93 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
|
@@ -99,11 +99,11 @@ async def data(request: Request):
|
|
| 99 |
data = json.loads(body)
|
| 100 |
selected_languages = data.get("selectedLanguages", {})
|
| 101 |
df = (
|
| 102 |
-
|
| 103 |
)
|
| 104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
| 105 |
language_table = make_language_table(df, languages)
|
| 106 |
-
datasets_df = pd.read_json("
|
| 107 |
if selected_languages:
|
| 108 |
# the filtering is only applied for the model table and the country data
|
| 109 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
|
@@ -117,7 +117,7 @@ async def data(request: Request):
|
|
| 117 |
}
|
| 118 |
return JSONResponse(content=all_tables)
|
| 119 |
|
| 120 |
-
app.mount("/", StaticFiles(directory="frontend/
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
import json
|
| 2 |
+
import os
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import uvicorn
|
|
|
|
| 9 |
from fastapi.responses import JSONResponse
|
| 10 |
from fastapi.staticfiles import StaticFiles
|
| 11 |
|
|
|
|
|
|
|
| 12 |
from countries import make_country_table
|
| 13 |
|
| 14 |
+
with open("results.json", "r") as f:
|
| 15 |
+
results = json.load(f)
|
| 16 |
+
scores = pd.DataFrame(results["scores"])
|
| 17 |
+
languages = pd.DataFrame(results["languages"])
|
| 18 |
+
models = pd.DataFrame(results["models"])
|
| 19 |
+
|
| 20 |
def mean(lst):
|
| 21 |
return sum(lst) / len(lst) if lst else None
|
| 22 |
|
|
|
|
| 34 |
df["average"] = df[task_metrics].mean(axis=1)
|
| 35 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
| 36 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
|
|
|
| 37 |
df["rank"] = df.index + 1
|
| 38 |
df = df[
|
| 39 |
[
|
|
|
|
| 88 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
| 89 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
def serialize(df):
|
| 93 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
|
|
|
| 99 |
data = json.loads(body)
|
| 100 |
selected_languages = data.get("selectedLanguages", {})
|
| 101 |
df = (
|
| 102 |
+
scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
| 103 |
)
|
| 104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
| 105 |
language_table = make_language_table(df, languages)
|
| 106 |
+
datasets_df = pd.read_json("datasets.json")
|
| 107 |
if selected_languages:
|
| 108 |
# the filtering is only applied for the model table and the country data
|
| 109 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
|
|
|
| 117 |
}
|
| 118 |
return JSONResponse(content=all_tables)
|
| 119 |
|
| 120 |
+
app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))
|
evals/countries.py
CHANGED
|
@@ -1,26 +1,11 @@
|
|
| 1 |
import re
|
| 2 |
-
import xml.etree.ElementTree as ET
|
| 3 |
from collections import defaultdict
|
| 4 |
from joblib.memory import Memory
|
| 5 |
import pandas as pd
|
| 6 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
| 7 |
-
from language_data.util import data_filename
|
| 8 |
|
| 9 |
cache = Memory(location=".cache", verbose=0).cache
|
| 10 |
|
| 11 |
-
@cache
|
| 12 |
-
def get_population_data():
|
| 13 |
-
filename = data_filename("supplementalData.xml")
|
| 14 |
-
root = ET.fromstring(open(filename).read())
|
| 15 |
-
territories = root.findall("./territoryInfo/territory")
|
| 16 |
-
|
| 17 |
-
data = {}
|
| 18 |
-
for territory in territories:
|
| 19 |
-
t_code = territory.attrib["type"]
|
| 20 |
-
t_population = float(territory.attrib["population"])
|
| 21 |
-
data[t_code] = t_population
|
| 22 |
-
return data
|
| 23 |
-
|
| 24 |
|
| 25 |
def population(bcp_47):
|
| 26 |
items = {
|
|
|
|
| 1 |
import re
|
|
|
|
| 2 |
from collections import defaultdict
|
| 3 |
from joblib.memory import Memory
|
| 4 |
import pandas as pd
|
| 5 |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
|
|
|
| 6 |
|
| 7 |
cache = Memory(location=".cache", verbose=0).cache
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def population(bcp_47):
|
| 11 |
items = {
|
evals/main.py
CHANGED
|
@@ -1,10 +1,13 @@
|
|
| 1 |
import asyncio
|
| 2 |
import json
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from languages import languages
|
| 5 |
from models import model_fast, models
|
| 6 |
from tasks import tasks
|
| 7 |
-
from tqdm.asyncio import tqdm_asyncio
|
| 8 |
|
| 9 |
# ===== config =====
|
| 10 |
|
|
@@ -33,11 +36,18 @@ async def evaluate():
|
|
| 33 |
]
|
| 34 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
| 35 |
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
async def main():
|
|
|
|
| 39 |
results = await evaluate()
|
| 40 |
results = [r for group in results for r in group]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
with open("results.json", "w") as f:
|
| 42 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
| 43 |
|
|
|
|
| 1 |
import asyncio
|
| 2 |
import json
|
| 3 |
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 7 |
+
|
| 8 |
from languages import languages
|
| 9 |
from models import model_fast, models
|
| 10 |
from tasks import tasks
|
|
|
|
| 11 |
|
| 12 |
# ===== config =====
|
| 13 |
|
|
|
|
| 36 |
]
|
| 37 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
| 38 |
|
| 39 |
+
def serialize(df):
|
| 40 |
+
return df.replace({np.nan: None, pd.NA: None}).to_dict(orient="records")
|
| 41 |
|
| 42 |
async def main():
|
| 43 |
+
models["creation_date"] = models["creation_date"].apply(lambda x: x.isoformat())
|
| 44 |
results = await evaluate()
|
| 45 |
results = [r for group in results for r in group]
|
| 46 |
+
results = {
|
| 47 |
+
"languages": serialize(languages),
|
| 48 |
+
"models": serialize(models),
|
| 49 |
+
"scores": results,
|
| 50 |
+
}
|
| 51 |
with open("results.json", "w") as f:
|
| 52 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
| 53 |
|
frontend/public/README.md
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: AI Language Monitor
|
| 3 |
-
emoji: 🌍
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: static
|
| 7 |
-
license: cc-by-sa-4.0
|
| 8 |
-
short_description: Evaluating LLM performance across all human languages.
|
| 9 |
-
datasets:
|
| 10 |
-
- openlanguagedata/flores_plus
|
| 11 |
-
- google/fleurs
|
| 12 |
-
- mozilla-foundation/common_voice_1_0
|
| 13 |
-
models:
|
| 14 |
-
- meta-llama/Llama-3.3-70B-Instruct
|
| 15 |
-
- mistralai/Mistral-Small-24B-Instruct-2501
|
| 16 |
-
- deepseek-ai/DeepSeek-V3
|
| 17 |
-
- microsoft/phi-4
|
| 18 |
-
- openai/whisper-large-v3
|
| 19 |
-
- google/gemma-3-27b-it
|
| 20 |
-
tags:
|
| 21 |
-
- leaderboard
|
| 22 |
-
- submission:manual
|
| 23 |
-
- test:public
|
| 24 |
-
- judge:auto
|
| 25 |
-
- modality:text
|
| 26 |
-
- modality:artefacts
|
| 27 |
-
- eval:generation
|
| 28 |
-
- language:English
|
| 29 |
-
- language:German
|
| 30 |
-
---
|
| 31 |
-
|
| 32 |
-
<!--
|
| 33 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 34 |
-
For tag meaning, see https://huggingface.co/spaces/leaderboards/LeaderboardsExplorer
|
| 35 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/App.js
CHANGED
|
@@ -62,10 +62,12 @@ function App () {
|
|
| 62 |
<p style={{ fontSize: '1.15rem', color: '#555', marginTop: '0' }}>
|
| 63 |
Tracking language proficiency of AI models for every language
|
| 64 |
</p>
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
</header>
|
| 70 |
<main
|
| 71 |
style={{
|
|
|
|
| 62 |
<p style={{ fontSize: '1.15rem', color: '#555', marginTop: '0' }}>
|
| 63 |
Tracking language proficiency of AI models for every language
|
| 64 |
</p>
|
| 65 |
+
{data && (
|
| 66 |
+
<AutoComplete
|
| 67 |
+
languages={data?.language_table}
|
| 68 |
+
onComplete={items => setSelectedLanguages(items)}
|
| 69 |
+
/>
|
| 70 |
+
)}
|
| 71 |
</header>
|
| 72 |
<main
|
| 73 |
style={{
|
frontend/src/components/AutoComplete.js
CHANGED
|
@@ -5,8 +5,8 @@ const AutoComplete = ({ languages, onComplete }) => {
|
|
| 5 |
const [suggestions, setSuggestions] = useState([])
|
| 6 |
|
| 7 |
const exampleCodes = ['de', 'fr', 'ar', 'hi', 'sw', 'fa']
|
| 8 |
-
const exampleLanguages =
|
| 9 |
-
|
| 10 |
)
|
| 11 |
|
| 12 |
const search = e => {
|
|
|
|
| 5 |
const [suggestions, setSuggestions] = useState([])
|
| 6 |
|
| 7 |
const exampleCodes = ['de', 'fr', 'ar', 'hi', 'sw', 'fa']
|
| 8 |
+
const exampleLanguages = exampleCodes.map(code =>
|
| 9 |
+
languages?.find(item => item.bcp_47 === code)
|
| 10 |
)
|
| 11 |
|
| 12 |
const search = e => {
|
pyproject.toml
CHANGED
|
@@ -9,6 +9,8 @@ dependencies = [
|
|
| 9 |
"uvicorn>=0.34.0",
|
| 10 |
"pandas>=2.2.3",
|
| 11 |
"numpy>=2.1.2",
|
|
|
|
|
|
|
| 12 |
]
|
| 13 |
|
| 14 |
[tool.uv]
|
|
|
|
| 9 |
"uvicorn>=0.34.0",
|
| 10 |
"pandas>=2.2.3",
|
| 11 |
"numpy>=2.1.2",
|
| 12 |
+
"joblib>=1.4.2",
|
| 13 |
+
"language-data>=1.3.0",
|
| 14 |
]
|
| 15 |
|
| 16 |
[tool.uv]
|
results.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
uv.lock
CHANGED
|
@@ -845,6 +845,8 @@ version = "0.1.0"
|
|
| 845 |
source = { virtual = "." }
|
| 846 |
dependencies = [
|
| 847 |
{ name = "fastapi" },
|
|
|
|
|
|
|
| 848 |
{ name = "numpy" },
|
| 849 |
{ name = "pandas" },
|
| 850 |
{ name = "uvicorn" },
|
|
@@ -874,6 +876,8 @@ dev = [
|
|
| 874 |
[package.metadata]
|
| 875 |
requires-dist = [
|
| 876 |
{ name = "fastapi", specifier = ">=0.115.8" },
|
|
|
|
|
|
|
| 877 |
{ name = "numpy", specifier = ">=2.1.2" },
|
| 878 |
{ name = "pandas", specifier = ">=2.2.3" },
|
| 879 |
{ name = "uvicorn", specifier = ">=0.34.0" },
|
|
|
|
| 845 |
source = { virtual = "." }
|
| 846 |
dependencies = [
|
| 847 |
{ name = "fastapi" },
|
| 848 |
+
{ name = "joblib" },
|
| 849 |
+
{ name = "language-data" },
|
| 850 |
{ name = "numpy" },
|
| 851 |
{ name = "pandas" },
|
| 852 |
{ name = "uvicorn" },
|
|
|
|
| 876 |
[package.metadata]
|
| 877 |
requires-dist = [
|
| 878 |
{ name = "fastapi", specifier = ">=0.115.8" },
|
| 879 |
+
{ name = "joblib", specifier = ">=1.4.2" },
|
| 880 |
+
{ name = "language-data", specifier = ">=1.3.0" },
|
| 881 |
{ name = "numpy", specifier = ">=2.1.2" },
|
| 882 |
{ name = "pandas", specifier = ">=2.2.3" },
|
| 883 |
{ name = "uvicorn", specifier = ">=0.34.0" },
|