fahadqazi commited on
Commit
6321eec
·
verified ·
1 Parent(s): 9561150

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -25
app.py CHANGED
@@ -2,8 +2,6 @@ from transformers import pipeline
2
  import gradio as gr
3
  import os
4
  import torch
5
- import srt
6
- from datetime import timedelta
7
 
8
 
9
 
@@ -17,33 +15,13 @@ if not auth_token:
17
  pipe = pipeline(model="fahadqazi/whisper-small-sindhi", device=device, token=auth_token) # change to "your-username/the-name-you-picked"
18
 
19
  def transcribe(audio):
20
- # Perform transcription
21
- result = pipe(audio)
22
- transcription = result["text"]
23
-
24
- # Generate timestamps for transcription (You might need to tweak this to match your desired chunks)
25
- segments = result.get("chunks", []) # Assuming the model returns chunks (this depends on model and pipeline)
26
-
27
- # Create an SRT object
28
- subtitle_generator = []
29
- start_time = timedelta(seconds=0)
30
-
31
- for i, segment in enumerate(segments):
32
- end_time = start_time + timedelta(seconds=segment["end"]) # Using segment['end'] to create time intervals
33
- subtitle_generator.append(srt.Subtitle(index=i+1, start=start_time, end=end_time, content=segment["text"]))
34
- start_time = end_time # Update start_time for next subtitle
35
-
36
- # Write subtitles to .srt file
37
- srt_file = "output.srt"
38
- with open(srt_file, "w") as f:
39
- f.write(srt.compose(subtitle_generator))
40
-
41
- return transcription, srt_file
42
 
43
  iface = gr.Interface(
44
  fn=transcribe,
45
  inputs=gr.Audio(type="filepath"),
46
- outputs=["text", "file"],
47
  title="Whisper Small Sindhi",
48
  description="Realtime demo for Sindhi speech recognition using a fine-tuned Whisper small model.",
49
  )
 
2
  import gradio as gr
3
  import os
4
  import torch
 
 
5
 
6
 
7
 
 
15
  pipe = pipeline(model="fahadqazi/whisper-small-sindhi", device=device, token=auth_token) # change to "your-username/the-name-you-picked"
16
 
17
  def transcribe(audio):
18
+ text = pipe(audio)["text"]
19
+ return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  iface = gr.Interface(
22
  fn=transcribe,
23
  inputs=gr.Audio(type="filepath"),
24
+ outputs="text",
25
  title="Whisper Small Sindhi",
26
  description="Realtime demo for Sindhi speech recognition using a fine-tuned Whisper small model.",
27
  )