import gradio as gr from ultralytics import YOLO import cv2 import easyocr import numpy as np from PIL import Image # Load YOLO model model = YOLO('yolo11n-custom.pt') model.fuse() # Load EasyOCR reader = easyocr.Reader(['en']) def detect_license_plate(image): results = model.predict(image, conf=0.15, iou=0.3, classes=[0]) plate_texts = [] img_array = np.array(image) img = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_height, img_width, _ = img.shape for result in results: for bbox in result.boxes.xyxy: x1, y1, x2, y2 = map(int, bbox.tolist()) plate = img[int(y1):int(y2), int(x1):int(x2)] scale = 2 height, width = plate.shape[:2] plate = cv2.resize(plate, (width * scale, height * scale), interpolation=cv2.INTER_CUBIC) lab = cv2.cvtColor(plate, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) l = clahe.apply(l) plate = cv2.merge((l, a, b)) plate = cv2.cvtColor(plate, cv2.COLOR_LAB2RGB) text = reader.readtext(plate, detail=0, allowlist="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-") text = " ".join(text).upper() text_scale = max(1, width / 250) thickness = max(2, width // 200) cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), thickness) (text_width, text_height), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, text_scale, thickness) text_x = x1 + (width - text_width) // 2 text_y = y1 - 10 if y1 > 50 else y2 + text_height + 20 text_box_y1 = text_y - text_height - 5 text_box_y2 = text_y + 5 cv2.rectangle(img, (text_x - 8, text_box_y1 - 3), (text_x + text_width + 8, text_box_y2 + 3), (0, 0, 0), -1) cv2.rectangle(img, (text_x - 5, text_box_y1), (text_x + text_width + 5, text_box_y2), (255, 255, 255), -1) cv2.putText(img, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, text_scale, (0, 0, 0), thickness) plate_texts.append(text) result_img = Image.fromarray(img) return result_img, "\n".join(plate_texts) if plate_texts else "No license plates detected." # Gradio UI iface = gr.Interface( fn=detect_license_plate, inputs=gr.Image(type="pil"), outputs=[ gr.Image(type="pil", label="Detected Image"), gr.Textbox(label="Detected License Plates") ], title="🚘 License Plate Detector", description="Upload an image with license plates to detect them using YOLO and EasyOCR." ) iface.launch()