vggt / demo_viser.py
JianyuanWang's picture
Initial commit
8d7c42a
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import glob
import time
import threading
import argparse
from typing import List, Optional
import copy
import numpy as np
import torch
from tqdm.auto import tqdm
import viser
import viser.transforms as viser_tf
import cv2
import requests
try:
import onnxruntime
except ImportError:
print("onnxruntime not found. Sky segmentation may not work.")
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
def viser_wrapper(
pred_dict: dict,
port: int = 8080,
init_conf_threshold: float = 50.0, # represents percentage (e.g., 50 means filter lowest 50%)
use_point_map: bool = False,
background_mode: bool = False,
mask_sky: bool = False,
image_folder: str = None,
):
"""
Visualize predicted 3D points and camera poses with viser.
Args:
pred_dict (dict):
{
"images": (S, 3, H, W) - Input images,
"world_points": (S, H, W, 3),
"world_points_conf": (S, H, W),
"depth": (S, H, W, 1),
"depth_conf": (S, H, W),
"extrinsic": (S, 3, 4),
"intrinsic": (S, 3, 3),
}
port (int): Port number for the viser server.
init_conf_threshold (float): Initial percentage of low-confidence points to filter out.
use_point_map (bool): Whether to visualize world_points or use depth-based points.
background_mode (bool): Whether to run the server in background thread.
mask_sky (bool): Whether to apply sky segmentation to filter out sky points.
image_folder (str): Path to the folder containing input images.
"""
print(f"Starting viser server on port {port}")
server = viser.ViserServer(host="0.0.0.0", port=port)
server.gui.configure_theme(titlebar_content=None, control_layout="collapsible")
# Unpack prediction dict
images = pred_dict["images"] # (S, 3, H, W)
world_points_map = pred_dict["world_points"] # (S, H, W, 3)
conf_map = pred_dict["world_points_conf"] # (S, H, W)
depth_map = pred_dict["depth"] # (S, H, W, 1)
depth_conf = pred_dict["depth_conf"] # (S, H, W)
extrinsics_cam = pred_dict["extrinsic"] # (S, 3, 4)
intrinsics_cam = pred_dict["intrinsic"] # (S, 3, 3)
# Compute world points from depth if not using the precomputed point map
if not use_point_map:
world_points = unproject_depth_map_to_point_map(depth_map, extrinsics_cam, intrinsics_cam)
conf = depth_conf
else:
world_points = world_points_map
conf = conf_map
# Apply sky segmentation if enabled
if mask_sky and image_folder is not None:
conf = apply_sky_segmentation(conf, image_folder)
# Convert images from (S, 3, H, W) to (S, H, W, 3)
# Then flatten everything for the point cloud
colors = images.transpose(0, 2, 3, 1) # now (S, H, W, 3)
S, H, W, _ = world_points.shape
# Flatten
points = world_points.reshape(-1, 3)
colors_flat = (colors.reshape(-1, 3) * 255).astype(np.uint8)
conf = conf.reshape(-1)
cam_to_world_mat = closed_form_inverse_se3(extrinsics_cam) # shape (S, 4, 4) typically
# For convenience, we store only (3,4) portion
cam_to_world = cam_to_world_mat[:, :3, :]
# Compute scene center and recenter
scene_center = np.mean(points, axis=0)
points_centered = points - scene_center
cam_to_world[..., -1] -= scene_center
# Store frame indices so we can filter by frame
frame_indices = np.repeat(np.arange(S), H * W)
# Build the viser GUI
gui_show_frames = server.gui.add_checkbox(
"Show Cameras",
initial_value=True,
)
# Now the slider represents percentage of points to filter out
gui_points_conf = server.gui.add_slider(
"Confidence Percent",
min=0,
max=100,
step=0.1,
initial_value=init_conf_threshold,
)
gui_frame_selector = server.gui.add_dropdown(
"Show Points from Frames",
options=["All"] + [str(i) for i in range(S)],
initial_value="All",
)
# Create the main point cloud handle
# Compute the threshold value as the given percentile
init_threshold_val = np.percentile(conf, init_conf_threshold)
init_conf_mask = conf > init_threshold_val
point_cloud = server.scene.add_point_cloud(
name="viser_pcd",
points=points_centered[init_conf_mask],
colors=colors_flat[init_conf_mask],
# point_size=0.0001,
point_size=0.001,
point_shape="circle",
)
# We will store references to frames & frustums so we can toggle visibility
frames: List[viser.FrameHandle] = []
frustums: List[viser.CameraFrustumHandle] = []
def visualize_frames(extrinsics: np.ndarray, images_: np.ndarray) -> None:
"""
Add camera frames and frustums to the scene.
extrinsics: (S, 3, 4)
images_: (S, 3, H, W)
"""
# Clear any existing frames or frustums
for f in frames:
f.remove()
frames.clear()
for fr in frustums:
fr.remove()
frustums.clear()
# Optionally attach a callback that sets the viewpoint to the chosen camera
def attach_callback(frustum: viser.CameraFrustumHandle, frame: viser.FrameHandle) -> None:
@frustum.on_click
def _(_) -> None:
for client in server.get_clients().values():
client.camera.wxyz = frame.wxyz
client.camera.position = frame.position
img_ids = range(S)
for img_id in tqdm(img_ids):
cam2world_3x4 = extrinsics[img_id]
T_world_camera = viser_tf.SE3.from_matrix(cam2world_3x4)
# Add a small frame axis
frame_axis = server.scene.add_frame(
f"frame_{img_id}",
wxyz=T_world_camera.rotation().wxyz,
position=T_world_camera.translation(),
axes_length=0.05,
axes_radius=0.002,
origin_radius=0.002,
)
frames.append(frame_axis)
# Convert the image for the frustum
img = images_[img_id] # shape (3, H, W)
img = (img.transpose(1, 2, 0) * 255).astype(np.uint8)
h, w = img.shape[:2]
# If you want correct FOV from intrinsics, do something like:
# fx = intrinsics_cam[img_id, 0, 0]
# fov = 2 * np.arctan2(h/2, fx)
# For demonstration, we pick a simple approximate FOV:
fy = 1.1 * h
fov = 2 * np.arctan2(h / 2, fy)
# Add the frustum
frustum_cam = server.scene.add_camera_frustum(
f"frame_{img_id}/frustum",
fov=fov,
aspect=w / h,
scale=0.05,
image=img,
line_width=1.0,
)
frustums.append(frustum_cam)
attach_callback(frustum_cam, frame_axis)
def update_point_cloud() -> None:
"""Update the point cloud based on current GUI selections."""
# Here we compute the threshold value based on the current percentage
current_percentage = gui_points_conf.value
threshold_val = np.percentile(conf, current_percentage)
conf_mask = conf > threshold_val
if gui_frame_selector.value == "All":
frame_mask = np.ones_like(conf_mask, dtype=bool)
else:
selected_idx = int(gui_frame_selector.value)
frame_mask = frame_indices == selected_idx
combined_mask = conf_mask & frame_mask
point_cloud.points = points_centered[combined_mask]
point_cloud.colors = colors_flat[combined_mask]
@gui_points_conf.on_update
def _(_) -> None:
update_point_cloud()
@gui_frame_selector.on_update
def _(_) -> None:
update_point_cloud()
@gui_show_frames.on_update
def _(_) -> None:
"""Toggle visibility of camera frames and frustums."""
for f in frames:
f.visible = gui_show_frames.value
for fr in frustums:
fr.visible = gui_show_frames.value
# Add the camera frames to the scene
visualize_frames(cam_to_world, images)
print("Starting viser server...")
# If background_mode is True, spawn a daemon thread so the main thread can continue.
if background_mode:
def server_loop():
while True:
time.sleep(0.001)
thread = threading.Thread(target=server_loop, daemon=True)
thread.start()
else:
while True:
time.sleep(0.01)
return server
# Helper functions for sky segmentation
def download_file_from_url(url, filename):
"""Downloads a file from a Hugging Face model repo, handling redirects."""
try:
# Get the redirect URL
response = requests.get(url, allow_redirects=False)
response.raise_for_status() # Raise HTTPError for bad requests (4xx or 5xx)
if response.status_code == 302: # Expecting a redirect
redirect_url = response.headers["Location"]
response = requests.get(redirect_url, stream=True)
response.raise_for_status()
else:
print(f"Unexpected status code: {response.status_code}")
return
with open(filename, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {filename} successfully.")
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
def apply_sky_segmentation(conf: np.ndarray, image_folder: str) -> np.ndarray:
"""
Apply sky segmentation to confidence scores.
Args:
conf (np.ndarray): Confidence scores with shape (S, H, W)
image_folder (str): Path to the folder containing input images
Returns:
np.ndarray: Updated confidence scores with sky regions masked out
"""
S, H, W = conf.shape
sky_masks_dir = image_folder.rstrip('/') + "_sky_masks"
os.makedirs(sky_masks_dir, exist_ok=True)
# Download skyseg.onnx if it doesn't exist
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_file_from_url(
"https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx", "skyseg.onnx"
)
skyseg_session = onnxruntime.InferenceSession("skyseg.onnx")
image_files = sorted(glob.glob(os.path.join(image_folder, "*")))
sky_mask_list = []
print("Generating sky masks...")
for i, image_path in enumerate(tqdm(image_files[:S])): # Limit to the number of images in the batch
image_name = os.path.basename(image_path)
mask_filepath = os.path.join(sky_masks_dir, image_name)
if os.path.exists(mask_filepath):
sky_mask = cv2.imread(mask_filepath, cv2.IMREAD_GRAYSCALE)
else:
sky_mask = segment_sky(image_path, skyseg_session, mask_filepath)
# Resize mask to match H×W if needed
if sky_mask.shape[0] != H or sky_mask.shape[1] != W:
sky_mask = cv2.resize(sky_mask, (W, H))
sky_mask_list.append(sky_mask)
# Convert list to numpy array with shape S×H×W
sky_mask_array = np.array(sky_mask_list)
# Apply sky mask to confidence scores
sky_mask_binary = (sky_mask_array > 0.01).astype(np.float32)
conf = conf * sky_mask_binary
print("Sky segmentation applied successfully")
return conf
def segment_sky(image_path, onnx_session, mask_filename=None):
"""
Segments sky from an image using an ONNX model.
Args:
image_path: Path to input image
onnx_session: ONNX runtime session with loaded model
mask_filename: Path to save the output mask
Returns:
np.ndarray: Binary mask where 255 indicates non-sky regions
"""
assert mask_filename is not None
image = cv2.imread(image_path)
result_map = run_skyseg(onnx_session, [320, 320], image)
# resize the result_map to the original image size
result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))
output_mask = np.zeros_like(result_map_original)
output_mask[result_map_original < 1] = 1
output_mask = output_mask.astype(np.uint8) * 255
os.makedirs(os.path.dirname(mask_filename), exist_ok=True)
cv2.imwrite(mask_filename, output_mask)
return output_mask
def run_skyseg(onnx_session, input_size, image):
"""
Runs sky segmentation inference using ONNX model.
Args:
onnx_session: ONNX runtime session
input_size: Target size for model input (width, height)
image: Input image in BGR format
Returns:
np.ndarray: Segmentation mask
"""
# Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
temp_image = copy.deepcopy(image)
resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
x = np.array(x, dtype=np.float32)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x = (x / 255 - mean) / std
x = x.transpose(2, 0, 1)
x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")
# Inference
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name
onnx_result = onnx_session.run([output_name], {input_name: x})
# Post process
onnx_result = np.array(onnx_result).squeeze()
min_value = np.min(onnx_result)
max_value = np.max(onnx_result)
onnx_result = (onnx_result - min_value) / (max_value - min_value)
onnx_result *= 255
onnx_result = onnx_result.astype("uint8")
return onnx_result
parser = argparse.ArgumentParser(description="VGGT demo with viser for 3D visualization")
parser.add_argument(
"--image_folder", type=str, default="examples/kitchen/images/", help="Path to folder containing images"
)
parser.add_argument("--use_point_map", action="store_true", help="Use point map instead of depth-based points")
parser.add_argument("--background_mode", action="store_true", help="Run the viser server in background mode")
parser.add_argument("--port", type=int, default=8080, help="Port number for the viser server")
parser.add_argument(
"--conf_threshold", type=float, default=25.0, help="Initial percentage of low-confidence points to filter out"
)
parser.add_argument("--mask_sky", action="store_true", help="Apply sky segmentation to filter out sky points")
def main():
"""
Main function for the VGGT demo with viser for 3D visualization.
This function:
1. Loads the VGGT model
2. Processes input images from the specified folder
3. Runs inference to generate 3D points and camera poses
4. Optionally applies sky segmentation to filter out sky points
5. Visualizes the results using viser
Command-line arguments:
--image_folder: Path to folder containing input images
--use_point_map: Use point map instead of depth-based points
--background_mode: Run the viser server in background mode
--port: Port number for the viser server
--conf_threshold: Initial percentage of low-confidence points to filter out
--mask_sky: Apply sky segmentation to filter out sky points
"""
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print("Initializing and loading VGGT model...")
model = VGGT()
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model.eval()
model = model.to(device)
# Use the provided image folder path
print(f"Loading images from {args.image_folder}...")
image_names = glob.glob(os.path.join(args.image_folder, "*"))
print(f"Found {len(image_names)} images")
images = load_and_preprocess_images(image_names).to(device)
print(f"Preprocessed images shape: {images.shape}")
print("Running inference...")
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
predictions = model(images)
print("Converting pose encoding to extrinsic and intrinsic matrices...")
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:])
predictions["extrinsic"] = extrinsic
predictions["intrinsic"] = intrinsic
print("Processing model outputs...")
for key in predictions.keys():
if isinstance(predictions[key], torch.Tensor):
predictions[key] = predictions[key].cpu().numpy().squeeze(0) # remove batch dimension and convert to numpy
if args.use_point_map:
print("Visualizing 3D points from point map")
else:
print("Visualizing 3D points by unprojecting depth map by cameras")
if args.mask_sky:
print("Sky segmentation enabled - will filter out sky points")
print("Starting viser visualization...")
viser_server = viser_wrapper(
predictions,
port=args.port,
init_conf_threshold=args.conf_threshold,
use_point_map=args.use_point_map,
background_mode=args.background_mode,
mask_sky=args.mask_sky,
image_folder=args.image_folder,
)
print("Visualization complete")
if __name__ == "__main__":
main()