|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
import sys |
|
import shutil |
|
from datetime import datetime |
|
import glob |
|
import gc |
|
import time |
|
import spaces |
|
|
|
|
|
sys.path.append("vggt/") |
|
|
|
from gradio_util import predictions_to_glb |
|
from vggt.models.vggt import VGGT |
|
from vggt.utils.load_fn import load_and_preprocess_images |
|
from vggt.utils.pose_enc import pose_encoding_to_extri_intri |
|
from vggt.utils.geometry import unproject_depth_map_to_point_map |
|
|
|
|
|
print("Initializing and loading VGGT model...") |
|
|
|
|
|
|
|
model = VGGT() |
|
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt" |
|
model.load_state_dict(torch.hub.load_state_dict_from_url(_URL)) |
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def run_model(target_dir, model) -> dict: |
|
""" |
|
Run the VGGT model on images in the 'target_dir/images' folder and return predictions. |
|
""" |
|
print(f"Processing images from {target_dir}") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
if not torch.cuda.is_available(): |
|
raise ValueError("CUDA is not available. Check your environment.") |
|
|
|
|
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
image_names = glob.glob(os.path.join(target_dir, "images", "*")) |
|
image_names = sorted(image_names) |
|
print(f"Found {len(image_names)} images") |
|
if len(image_names) == 0: |
|
raise ValueError("No images found. Check your upload.") |
|
|
|
images = load_and_preprocess_images(image_names).to(device) |
|
print(f"Preprocessed images shape: {images.shape}") |
|
|
|
|
|
print("Running inference...") |
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
predictions = model(images) |
|
|
|
|
|
print("Converting pose encoding to extrinsic and intrinsic matrices...") |
|
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:]) |
|
predictions["extrinsic"] = extrinsic |
|
predictions["intrinsic"] = intrinsic |
|
|
|
|
|
for key in predictions.keys(): |
|
if isinstance(predictions[key], torch.Tensor): |
|
predictions[key] = predictions[key].cpu().numpy().squeeze(0) |
|
|
|
|
|
print("Computing world points from depth map...") |
|
depth_map = predictions["depth"] |
|
world_points = unproject_depth_map_to_point_map(depth_map, predictions["extrinsic"], predictions["intrinsic"]) |
|
predictions["world_points_from_depth"] = world_points |
|
|
|
|
|
torch.cuda.empty_cache() |
|
return predictions |
|
|
|
|
|
|
|
|
|
|
|
def handle_uploads(input_video, input_images): |
|
""" |
|
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded |
|
images or extracted frames from video into it. Return (target_dir, image_paths). |
|
""" |
|
start_time = time.time() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") |
|
target_dir = f"input_images_{timestamp}" |
|
target_dir_images = os.path.join(target_dir, "images") |
|
|
|
|
|
if os.path.exists(target_dir): |
|
shutil.rmtree(target_dir) |
|
os.makedirs(target_dir) |
|
os.makedirs(target_dir_images) |
|
|
|
image_paths = [] |
|
|
|
|
|
if input_images is not None: |
|
for file_data in input_images: |
|
if isinstance(file_data, dict) and "name" in file_data: |
|
file_path = file_data["name"] |
|
else: |
|
file_path = file_data |
|
dst_path = os.path.join(target_dir_images, os.path.basename(file_path)) |
|
shutil.copy(file_path, dst_path) |
|
image_paths.append(dst_path) |
|
|
|
|
|
if input_video is not None: |
|
if isinstance(input_video, dict) and "name" in input_video: |
|
video_path = input_video["name"] |
|
else: |
|
video_path = input_video |
|
|
|
vs = cv2.VideoCapture(video_path) |
|
fps = vs.get(cv2.CAP_PROP_FPS) |
|
frame_interval = int(fps * 1) |
|
|
|
count = 0 |
|
video_frame_num = 0 |
|
while True: |
|
gotit, frame = vs.read() |
|
if not gotit: |
|
break |
|
count += 1 |
|
if count % frame_interval == 0: |
|
image_path = os.path.join(target_dir_images, f"{video_frame_num:06}.png") |
|
cv2.imwrite(image_path, frame) |
|
image_paths.append(image_path) |
|
video_frame_num += 1 |
|
|
|
|
|
image_paths = sorted(image_paths) |
|
|
|
end_time = time.time() |
|
print(f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds") |
|
return target_dir, image_paths |
|
|
|
|
|
|
|
|
|
|
|
def update_gallery_on_upload(input_video, input_images): |
|
""" |
|
Whenever user uploads or changes files, immediately handle them |
|
and show in the gallery. Return (target_dir, image_paths). |
|
If nothing is uploaded, returns "None" and empty list. |
|
""" |
|
if not input_video and not input_images: |
|
return None, None, None, None |
|
target_dir, image_paths = handle_uploads(input_video, input_images) |
|
return None, target_dir, image_paths, "Upload complete. Click 'Reconstruct' to begin 3D processing." |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def gradio_demo( |
|
target_dir, |
|
conf_thres=3.0, |
|
frame_filter="All", |
|
mask_black_bg=False, |
|
mask_white_bg=False, |
|
show_cam=True, |
|
mask_sky=False, |
|
prediction_mode="Pointmap Regression", |
|
): |
|
""" |
|
Perform reconstruction using the already-created target_dir/images. |
|
""" |
|
if not os.path.isdir(target_dir) or target_dir == "None": |
|
return None, "No valid target directory found. Please upload first.", None, None |
|
|
|
start_time = time.time() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
target_dir_images = os.path.join(target_dir, "images") |
|
all_files = sorted(os.listdir(target_dir_images)) if os.path.isdir(target_dir_images) else [] |
|
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)] |
|
frame_filter_choices = ["All"] + all_files |
|
|
|
print("Running run_model...") |
|
with torch.no_grad(): |
|
predictions = run_model(target_dir, model) |
|
|
|
|
|
prediction_save_path = os.path.join(target_dir, "predictions.npz") |
|
np.savez(prediction_save_path, **predictions) |
|
|
|
|
|
glbfile = os.path.join( |
|
target_dir, |
|
f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_maskb{mask_black_bg}_maskw{mask_white_bg}_cam{show_cam}_sky{mask_sky}_pred{prediction_mode.replace(' ', '_')}.glb", |
|
) |
|
|
|
|
|
glbscene = predictions_to_glb( |
|
predictions, |
|
conf_thres=conf_thres, |
|
filter_by_frames=frame_filter, |
|
mask_black_bg=mask_black_bg, |
|
mask_white_bg=mask_white_bg, |
|
show_cam=show_cam, |
|
mask_sky=mask_sky, |
|
target_dir=target_dir, |
|
prediction_mode=prediction_mode, |
|
) |
|
glbscene.export(file_obj=glbfile) |
|
|
|
|
|
del predictions |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
end_time = time.time() |
|
print(f"Total time: {end_time - start_time:.2f} seconds") |
|
log_msg = f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization." |
|
|
|
return glbfile, log_msg, gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True) |
|
|
|
|
|
|
|
|
|
|
|
def clear_fields(): |
|
""" |
|
Clears the 3D viewer, the stored target_dir, and empties the gallery. |
|
""" |
|
return None |
|
|
|
|
|
def update_log(): |
|
""" |
|
Display a quick log message while waiting. |
|
""" |
|
return "Loading and Reconstructing..." |
|
|
|
|
|
def update_visualization( |
|
target_dir, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example |
|
): |
|
""" |
|
Reload saved predictions from npz, create (or reuse) the GLB for new parameters, |
|
and return it for the 3D viewer. If is_example == "True", skip. |
|
""" |
|
|
|
|
|
if is_example == "True": |
|
return None, "No reconstruction available. Please click the Reconstruct button first." |
|
|
|
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir): |
|
return None, "No reconstruction available. Please click the Reconstruct button first." |
|
|
|
predictions_path = os.path.join(target_dir, "predictions.npz") |
|
if not os.path.exists(predictions_path): |
|
return None, f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first." |
|
|
|
loaded = np.load(predictions_path, allow_pickle=True) |
|
predictions = {key: loaded[key] for key in loaded.keys()} |
|
|
|
glbfile = os.path.join( |
|
target_dir, |
|
f"glbscene_{conf_thres}_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_maskb{mask_black_bg}_maskw{mask_white_bg}_cam{show_cam}_sky{mask_sky}_pred{prediction_mode.replace(' ', '_')}.glb", |
|
) |
|
|
|
if not os.path.exists(glbfile): |
|
glbscene = predictions_to_glb( |
|
predictions, |
|
conf_thres=conf_thres, |
|
filter_by_frames=frame_filter, |
|
mask_black_bg=mask_black_bg, |
|
mask_white_bg=mask_white_bg, |
|
show_cam=show_cam, |
|
mask_sky=mask_sky, |
|
target_dir=target_dir, |
|
prediction_mode=prediction_mode, |
|
) |
|
glbscene.export(file_obj=glbfile) |
|
|
|
return glbfile, "Updating Visualization" |
|
|
|
|
|
|
|
|
|
|
|
|
|
canyon_video = "examples/videos/Studlagil_Canyon_East_Iceland.mp4" |
|
great_wall_video = "examples/videos/great_wall.mp4" |
|
colosseum_video = "examples/videos/Colosseum.mp4" |
|
room_video = "examples/videos/room.mp4" |
|
kitchen_video = "examples/videos/kitchen.mp4" |
|
fern_video = "examples/videos/fern.mp4" |
|
single_cartoon_video = "examples/videos/single_cartoon.mp4" |
|
single_oil_painting_video = "examples/videos/single_oil_painting.mp4" |
|
pyramid_video = "examples/videos/pyramid.mp4" |
|
|
|
|
|
|
|
|
|
|
|
theme = gr.themes.Ocean() |
|
theme.set( |
|
checkbox_label_background_fill_selected="*button_primary_background_fill", |
|
checkbox_label_text_color_selected="*button_primary_text_color", |
|
) |
|
|
|
with gr.Blocks( |
|
theme=theme, |
|
css=""" |
|
.custom-log * { |
|
font-style: italic; |
|
font-size: 22px !important; |
|
background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%); |
|
-webkit-background-clip: text; |
|
background-clip: text; |
|
font-weight: bold !important; |
|
color: transparent !important; |
|
text-align: center !important; |
|
} |
|
|
|
.example-log * { |
|
font-style: italic; |
|
font-size: 16px !important; |
|
background-image: linear-gradient(120deg, #0ea5e9 0%, #6ee7b7 60%, #34d399 100%); |
|
-webkit-background-clip: text; |
|
background-clip: text; |
|
color: transparent !important; |
|
} |
|
|
|
#my_radio .wrap { |
|
display: flex; |
|
flex-wrap: nowrap; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
|
|
#my_radio .wrap label { |
|
display: flex; |
|
width: 50%; |
|
justify-content: center; |
|
align-items: center; |
|
margin: 0; |
|
padding: 10px 0; |
|
box-sizing: border-box; |
|
} |
|
""", |
|
) as demo: |
|
|
|
|
|
is_example = gr.Textbox(label="is_example", visible=False, value="None") |
|
num_images = gr.Textbox(label="num_images", visible=False, value="None") |
|
|
|
gr.Markdown( |
|
""" |
|
# 🏛️ VGGT: Visual Geometry Grounded Transformer |
|
|
|
[🐙 GitHub Repository](https://github.com/facebookresearch/vggt) | [Project Page]() |
|
|
|
<div style="font-size: 16px; line-height: 1.5;"> |
|
<p>Upload a video or a set of images to create a 3D reconstruction of a scene or object. VGGT takes these images and generates a 3D point cloud, along with estimated camera poses.</p> |
|
|
|
<h3>Getting Started:</h3> |
|
<ol> |
|
<li><strong>Upload Your Data:</strong> Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).</li> |
|
<li><strong>Preview:</strong> Your uploaded images will appear in the gallery on the left.</li> |
|
<li><strong>Reconstruct:</strong> Click the "Reconstruct" button to start the 3D reconstruction process.</li> |
|
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file. Note the visualization of 3D points may be slow for large number of input images. </li> |
|
<li><strong>Adjust Visualization (Optional):</strong> After reconstruction, you can fine-tune the visualization using the options below: |
|
<ul> |
|
<li><em>Confidence Threshold:</em> Adjusts the filtering of points based on the model's confidence. Higher values show only the most confident points.</li> |
|
<li><em>Show Points from Frame:</em> Select specific frames to display in the point cloud. Useful for isolating parts of a scene.</li> |
|
<li><em>Show Camera:</em> Toggle the display of the estimated camera positions.</li> |
|
<li><em>Filter Sky / Filter Black Background:</em> These options attempt to remove points corresponding to the sky or black backgrounds.</li> |
|
<li><em>Select a Prediction Mode:</em> Choose between "Depthmap and Camera Branch" and "Pointmap Branch". They usually look similar, while "Depthmap and Camera Branch" give slightly better details.</li> |
|
</ul> |
|
</li> |
|
</ol> |
|
<p><strong>Please note:</strong> Our method usually only needs less than 1 second to reconstruct a scene, but the visualization of 3D points may take tens of seconds, especially when the number of images is large. Please be patient or, for faster visualization, use a local machine to run our demo from our <a href="https://github.com/facebookresearch/vggt">GitHub repository</a>.</p> |
|
</div> |
|
""" |
|
) |
|
|
|
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
input_video = gr.Video(label="Upload Video", interactive=True) |
|
input_images = gr.File(file_count="multiple", label="Upload Images", interactive=True) |
|
|
|
image_gallery = gr.Gallery( |
|
label="Preview", |
|
columns=4, |
|
height="300px", |
|
show_download_button=True, |
|
object_fit="contain", |
|
preview=True, |
|
) |
|
|
|
with gr.Column(scale=4): |
|
with gr.Column(): |
|
gr.Markdown("**3D Reconstruction (Point Cloud and Camera Poses)**") |
|
log_output = gr.Markdown( |
|
"Please upload a video or images, then click Reconstruct.", elem_classes=["custom-log"] |
|
) |
|
reconstruction_output = gr.Model3D(height=520, zoom_speed=0.5, pan_speed=0.5) |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Reconstruct", scale=1, variant="primary") |
|
clear_btn = gr.ClearButton( |
|
[input_video, input_images, reconstruction_output, log_output, target_dir_output, image_gallery], |
|
scale=1, |
|
) |
|
|
|
with gr.Row(): |
|
prediction_mode = gr.Radio( |
|
["Depthmap and Camera Branch", "Pointmap Branch"], |
|
label="Select a Prediction Mode", |
|
value="Depthmap and Camera Branch", |
|
scale=1, |
|
elem_id="my_radio", |
|
) |
|
|
|
with gr.Row(): |
|
conf_thres = gr.Slider(minimum=0, maximum=100, value=50, step=0.1, label="Confidence Threshold (%)") |
|
frame_filter = gr.Dropdown(choices=["All"], value="All", label="Show Points from Frame") |
|
with gr.Column(): |
|
show_cam = gr.Checkbox(label="Show Camera", value=True) |
|
mask_sky = gr.Checkbox(label="Filter Sky", value=False) |
|
mask_black_bg = gr.Checkbox(label="Filter Black Background", value=False) |
|
mask_white_bg = gr.Checkbox(label="Filter White Background", value=False) |
|
|
|
|
|
examples = [ |
|
[colosseum_video, "22", None, 20.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[pyramid_video, "30", None, 35.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[single_cartoon_video, "1", None, 15.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[single_oil_painting_video, "1", None, 20.0, False, True, True, True, "Depthmap and Camera Branch", "True"], |
|
[canyon_video, "14", None, 40.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[room_video, "8", None, 5.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[kitchen_video, "25", None, 50.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
[fern_video, "20", None, 45.0, False, False, True, False, "Depthmap and Camera Branch", "True"], |
|
] |
|
|
|
def example_pipeline( |
|
input_video, |
|
num_images_str, |
|
input_images, |
|
conf_thres, |
|
mask_black_bg, |
|
mask_white_bg, |
|
show_cam, |
|
mask_sky, |
|
prediction_mode, |
|
is_example_str, |
|
): |
|
""" |
|
1) Copy example images to new target_dir |
|
2) Reconstruct |
|
3) Return model3D + logs + new_dir + updated dropdown + gallery |
|
We do NOT return is_example. It's just an input. |
|
""" |
|
target_dir, image_paths = handle_uploads(input_video, input_images) |
|
|
|
frame_filter = "All" |
|
glbfile, log_msg, dropdown = gradio_demo( |
|
target_dir, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode |
|
) |
|
return glbfile, log_msg, target_dir, dropdown, image_paths |
|
|
|
gr.Markdown("Click any row to load an example.", elem_classes=["example-log"]) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[ |
|
input_video, |
|
num_images, |
|
input_images, |
|
conf_thres, |
|
mask_black_bg, |
|
mask_white_bg, |
|
show_cam, |
|
mask_sky, |
|
prediction_mode, |
|
is_example, |
|
], |
|
outputs=[ |
|
reconstruction_output, |
|
log_output, |
|
target_dir_output, |
|
frame_filter, |
|
image_gallery, |
|
], |
|
fn=example_pipeline, |
|
cache_examples=False, |
|
examples_per_page=50, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
submit_btn.click(fn=clear_fields, inputs=[], outputs=[reconstruction_output]).then( |
|
fn=update_log, inputs=[], outputs=[log_output] |
|
).then( |
|
fn=gradio_demo, |
|
inputs=[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode], |
|
outputs=[reconstruction_output, log_output, frame_filter], |
|
).then( |
|
fn=lambda: "False", inputs=[], outputs=[is_example] |
|
) |
|
|
|
|
|
|
|
|
|
conf_thres.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
frame_filter.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
mask_black_bg.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
mask_white_bg.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
show_cam.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
mask_sky.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
prediction_mode.change( |
|
update_visualization, |
|
[target_dir_output, conf_thres, frame_filter, mask_black_bg, mask_white_bg, show_cam, mask_sky, prediction_mode, is_example], |
|
[reconstruction_output, log_output], |
|
) |
|
|
|
|
|
|
|
|
|
input_video.change( |
|
fn=update_gallery_on_upload, |
|
inputs=[input_video, input_images], |
|
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output], |
|
) |
|
input_images.change( |
|
fn=update_gallery_on_upload, |
|
inputs=[input_video, input_images], |
|
outputs=[reconstruction_output, target_dir_output, image_gallery, log_output], |
|
) |
|
|
|
demo.queue(max_size=20).launch(show_error=True, share=True) |
|
|