Spaces:
Running
on
T4
Running
on
T4
Mark Duppenthaler
commited on
Commit
·
5cae5d7
1
Parent(s):
108017c
Update with streaming input
Browse files- Dockerfile +5 -1
- app.py +54 -407
- requirements.txt +3 -1
Dockerfile
CHANGED
@@ -53,4 +53,8 @@ ENV PYTHONPATH=${HOME}/app \
|
|
53 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
54 |
GRADIO_THEME=huggingface \
|
55 |
SYSTEM=spaces
|
56 |
-
|
|
|
|
|
|
|
|
|
|
53 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
54 |
GRADIO_THEME=huggingface \
|
55 |
SYSTEM=spaces
|
56 |
+
|
57 |
+
# gradio instead of python for reload on file save with mountin pwd volume:
|
58 |
+
# docker run -p 7860:7860 -v $(pwd):/home/user/app seamless_m4t_text
|
59 |
+
CMD ["gradio", "app.py"]
|
60 |
+
# CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -8,428 +8,75 @@ import torch
|
|
8 |
import torchaudio
|
9 |
from seamless_communication.models.inference.translator import Translator
|
10 |
|
11 |
-
from
|
12 |
-
LANGUAGE_NAME_TO_CODE,
|
13 |
-
S2ST_TARGET_LANGUAGE_NAMES,
|
14 |
-
S2TT_TARGET_LANGUAGE_NAMES,
|
15 |
-
T2TT_TARGET_LANGUAGE_NAMES,
|
16 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
17 |
-
)
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
25 |
-
translation and more, without relying on multiple separate models.
|
26 |
-
"""
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
"T2TT (Text to Text translation)",
|
35 |
-
"ASR (Automatic Speech Recognition)",
|
36 |
-
]
|
37 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
38 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
39 |
-
DEFAULT_TARGET_LANGUAGE = "French"
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
-
|
49 |
-
|
50 |
-
def predict(
|
51 |
-
task_name: str,
|
52 |
-
audio_source: str,
|
53 |
-
input_audio_mic: str | None,
|
54 |
-
input_audio_file: str | None,
|
55 |
-
input_text: str | None,
|
56 |
-
source_language: str | None,
|
57 |
-
target_language: str,
|
58 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
59 |
-
task_name = task_name.split()[0]
|
60 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
61 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
62 |
-
|
63 |
-
if task_name in ["S2ST", "S2TT", "ASR"]:
|
64 |
-
if audio_source == "microphone":
|
65 |
-
input_data = input_audio_mic
|
66 |
-
else:
|
67 |
-
input_data = input_audio_file
|
68 |
-
|
69 |
-
arr, org_sr = torchaudio.load(input_data)
|
70 |
-
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
71 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
72 |
-
if new_arr.shape[1] > max_length:
|
73 |
-
new_arr = new_arr[:, :max_length]
|
74 |
-
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
75 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
76 |
-
else:
|
77 |
-
input_data = input_text
|
78 |
-
text_out, wav, sr = translator.predict(
|
79 |
-
input=input_data,
|
80 |
-
task_str=task_name,
|
81 |
-
tgt_lang=target_language_code,
|
82 |
-
src_lang=source_language_code,
|
83 |
-
ngram_filtering=True,
|
84 |
-
sample_rate=AUDIO_SAMPLE_RATE,
|
85 |
-
)
|
86 |
-
if task_name in ["S2ST", "T2ST"]:
|
87 |
-
return (sr, wav.cpu().detach().numpy()), text_out
|
88 |
-
else:
|
89 |
-
return None, text_out
|
90 |
-
|
91 |
-
|
92 |
-
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
93 |
-
return predict(
|
94 |
-
task_name="S2ST",
|
95 |
-
audio_source="file",
|
96 |
-
input_audio_mic=None,
|
97 |
-
input_audio_file=input_audio_file,
|
98 |
-
input_text=None,
|
99 |
-
source_language=None,
|
100 |
-
target_language=target_language,
|
101 |
-
)
|
102 |
-
|
103 |
-
|
104 |
-
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
105 |
-
return predict(
|
106 |
-
task_name="S2TT",
|
107 |
-
audio_source="file",
|
108 |
-
input_audio_mic=None,
|
109 |
-
input_audio_file=input_audio_file,
|
110 |
-
input_text=None,
|
111 |
-
source_language=None,
|
112 |
-
target_language=target_language,
|
113 |
-
)
|
114 |
-
|
115 |
-
|
116 |
-
def process_t2st_example(
|
117 |
-
input_text: str, source_language: str, target_language: str
|
118 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
119 |
-
return predict(
|
120 |
-
task_name="T2ST",
|
121 |
-
audio_source="",
|
122 |
-
input_audio_mic=None,
|
123 |
-
input_audio_file=None,
|
124 |
-
input_text=input_text,
|
125 |
-
source_language=source_language,
|
126 |
-
target_language=target_language,
|
127 |
-
)
|
128 |
-
|
129 |
-
|
130 |
-
def process_t2tt_example(
|
131 |
-
input_text: str, source_language: str, target_language: str
|
132 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
133 |
-
return predict(
|
134 |
-
task_name="T2TT",
|
135 |
-
audio_source="",
|
136 |
-
input_audio_mic=None,
|
137 |
-
input_audio_file=None,
|
138 |
-
input_text=input_text,
|
139 |
-
source_language=source_language,
|
140 |
-
target_language=target_language,
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
145 |
-
return predict(
|
146 |
-
task_name="ASR",
|
147 |
-
audio_source="file",
|
148 |
-
input_audio_mic=None,
|
149 |
-
input_audio_file=input_audio_file,
|
150 |
-
input_text=None,
|
151 |
-
source_language=None,
|
152 |
-
target_language=target_language,
|
153 |
-
)
|
154 |
-
|
155 |
-
|
156 |
-
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
157 |
-
mic = audio_source == "microphone"
|
158 |
-
return (
|
159 |
-
gr.update(visible=mic, value=None), # input_audio_mic
|
160 |
-
gr.update(visible=not mic, value=None), # input_audio_file
|
161 |
-
)
|
162 |
|
163 |
|
164 |
-
def
|
165 |
-
|
166 |
-
if task_name == "S2ST":
|
167 |
-
return (
|
168 |
-
gr.update(visible=True), # audio_box
|
169 |
-
gr.update(visible=False), # input_text
|
170 |
-
gr.update(visible=False), # source_language
|
171 |
-
gr.update(
|
172 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
173 |
-
), # target_language
|
174 |
-
)
|
175 |
-
elif task_name == "S2TT":
|
176 |
-
return (
|
177 |
-
gr.update(visible=True), # audio_box
|
178 |
-
gr.update(visible=False), # input_text
|
179 |
-
gr.update(visible=False), # source_language
|
180 |
-
gr.update(
|
181 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
182 |
-
), # target_language
|
183 |
-
)
|
184 |
-
elif task_name == "T2ST":
|
185 |
-
return (
|
186 |
-
gr.update(visible=False), # audio_box
|
187 |
-
gr.update(visible=True), # input_text
|
188 |
-
gr.update(visible=True), # source_language
|
189 |
-
gr.update(
|
190 |
-
visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
191 |
-
), # target_language
|
192 |
-
)
|
193 |
-
elif task_name == "T2TT":
|
194 |
-
return (
|
195 |
-
gr.update(visible=False), # audio_box
|
196 |
-
gr.update(visible=True), # input_text
|
197 |
-
gr.update(visible=True), # source_language
|
198 |
-
gr.update(
|
199 |
-
visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
200 |
-
), # target_language
|
201 |
-
)
|
202 |
-
elif task_name == "ASR":
|
203 |
-
return (
|
204 |
-
gr.update(visible=True), # audio_box
|
205 |
-
gr.update(visible=False), # input_text
|
206 |
-
gr.update(visible=False), # source_language
|
207 |
-
gr.update(
|
208 |
-
visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
|
209 |
-
), # target_language
|
210 |
-
)
|
211 |
-
else:
|
212 |
-
raise ValueError(f"Unknown task: {task_name}")
|
213 |
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
223 |
-
return (
|
224 |
-
gr.update(visible=False, value=None), # output_audio
|
225 |
-
gr.update(value=None), # output_text
|
226 |
-
)
|
227 |
-
else:
|
228 |
-
raise ValueError(f"Unknown task: {task_name}")
|
229 |
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
240 |
|
|
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
value="Duplicate Space for private use",
|
246 |
-
elem_id="duplicate-button",
|
247 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
248 |
-
)
|
249 |
-
with gr.Group():
|
250 |
-
task_name = gr.Dropdown(
|
251 |
-
label="Task",
|
252 |
-
choices=TASK_NAMES,
|
253 |
-
value=TASK_NAMES[0],
|
254 |
-
)
|
255 |
-
with gr.Row():
|
256 |
-
source_language = gr.Dropdown(
|
257 |
-
label="Source language",
|
258 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
259 |
-
value="English",
|
260 |
-
visible=False,
|
261 |
-
)
|
262 |
-
target_language = gr.Dropdown(
|
263 |
-
label="Target language",
|
264 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
265 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
266 |
-
)
|
267 |
-
with gr.Row() as audio_box:
|
268 |
-
audio_source = gr.Radio(
|
269 |
-
label="Audio source",
|
270 |
-
choices=["file", "microphone"],
|
271 |
-
value="file",
|
272 |
-
)
|
273 |
-
input_audio_mic = gr.Audio(
|
274 |
-
label="Input speech",
|
275 |
-
type="filepath",
|
276 |
-
source="microphone",
|
277 |
-
visible=False,
|
278 |
-
)
|
279 |
-
input_audio_file = gr.Audio(
|
280 |
-
label="Input speech",
|
281 |
-
type="filepath",
|
282 |
-
source="upload",
|
283 |
-
visible=True,
|
284 |
-
)
|
285 |
-
input_text = gr.Textbox(label="Input text", visible=False)
|
286 |
-
btn = gr.Button("Translate")
|
287 |
-
with gr.Column():
|
288 |
-
output_audio = gr.Audio(
|
289 |
-
label="Translated speech",
|
290 |
-
autoplay=False,
|
291 |
-
streaming=False,
|
292 |
-
type="numpy",
|
293 |
-
)
|
294 |
-
output_text = gr.Textbox(label="Translated text")
|
295 |
|
296 |
-
with gr.Row(visible=True) as s2st_example_row:
|
297 |
-
s2st_examples = gr.Examples(
|
298 |
-
examples=[
|
299 |
-
["assets/sample_input.mp3", "French"],
|
300 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
301 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
302 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
303 |
-
],
|
304 |
-
inputs=[input_audio_file, target_language],
|
305 |
-
outputs=[output_audio, output_text],
|
306 |
-
fn=process_s2st_example,
|
307 |
-
cache_examples=CACHE_EXAMPLES,
|
308 |
-
)
|
309 |
-
with gr.Row(visible=False) as s2tt_example_row:
|
310 |
-
s2tt_examples = gr.Examples(
|
311 |
-
examples=[
|
312 |
-
["assets/sample_input.mp3", "French"],
|
313 |
-
["assets/sample_input.mp3", "Mandarin Chinese"],
|
314 |
-
["assets/sample_input_2.mp3", "Hindi"],
|
315 |
-
["assets/sample_input_2.mp3", "Spanish"],
|
316 |
-
],
|
317 |
-
inputs=[input_audio_file, target_language],
|
318 |
-
outputs=[output_audio, output_text],
|
319 |
-
fn=process_s2tt_example,
|
320 |
-
cache_examples=CACHE_EXAMPLES,
|
321 |
-
)
|
322 |
-
with gr.Row(visible=False) as t2st_example_row:
|
323 |
-
t2st_examples = gr.Examples(
|
324 |
-
examples=[
|
325 |
-
["My favorite animal is the elephant.", "English", "French"],
|
326 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
327 |
-
[
|
328 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
329 |
-
"English",
|
330 |
-
"Hindi",
|
331 |
-
],
|
332 |
-
[
|
333 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
334 |
-
"English",
|
335 |
-
"Spanish",
|
336 |
-
],
|
337 |
-
],
|
338 |
-
inputs=[input_text, source_language, target_language],
|
339 |
-
outputs=[output_audio, output_text],
|
340 |
-
fn=process_t2st_example,
|
341 |
-
cache_examples=CACHE_EXAMPLES,
|
342 |
-
)
|
343 |
-
with gr.Row(visible=False) as t2tt_example_row:
|
344 |
-
t2tt_examples = gr.Examples(
|
345 |
-
examples=[
|
346 |
-
["My favorite animal is the elephant.", "English", "French"],
|
347 |
-
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
348 |
-
[
|
349 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
350 |
-
"English",
|
351 |
-
"Hindi",
|
352 |
-
],
|
353 |
-
[
|
354 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
355 |
-
"English",
|
356 |
-
"Spanish",
|
357 |
-
],
|
358 |
-
],
|
359 |
-
inputs=[input_text, source_language, target_language],
|
360 |
-
outputs=[output_audio, output_text],
|
361 |
-
fn=process_t2tt_example,
|
362 |
-
cache_examples=CACHE_EXAMPLES,
|
363 |
-
)
|
364 |
-
with gr.Row(visible=False) as asr_example_row:
|
365 |
-
asr_examples = gr.Examples(
|
366 |
-
examples=[
|
367 |
-
["assets/sample_input.mp3", "English"],
|
368 |
-
["assets/sample_input_2.mp3", "English"],
|
369 |
-
],
|
370 |
-
inputs=[input_audio_file, target_language],
|
371 |
-
outputs=[output_audio, output_text],
|
372 |
-
fn=process_asr_example,
|
373 |
-
cache_examples=CACHE_EXAMPLES,
|
374 |
-
)
|
375 |
|
376 |
-
|
377 |
-
fn=update_audio_ui,
|
378 |
-
inputs=audio_source,
|
379 |
-
outputs=[
|
380 |
-
input_audio_mic,
|
381 |
-
input_audio_file,
|
382 |
-
],
|
383 |
-
queue=False,
|
384 |
-
api_name=False,
|
385 |
-
)
|
386 |
-
task_name.change(
|
387 |
-
fn=update_input_ui,
|
388 |
-
inputs=task_name,
|
389 |
-
outputs=[
|
390 |
-
audio_box,
|
391 |
-
input_text,
|
392 |
-
source_language,
|
393 |
-
target_language,
|
394 |
-
],
|
395 |
-
queue=False,
|
396 |
-
api_name=False,
|
397 |
-
).then(
|
398 |
-
fn=update_output_ui,
|
399 |
-
inputs=task_name,
|
400 |
-
outputs=[output_audio, output_text],
|
401 |
-
queue=False,
|
402 |
-
api_name=False,
|
403 |
-
).then(
|
404 |
-
fn=update_example_ui,
|
405 |
-
inputs=task_name,
|
406 |
-
outputs=[
|
407 |
-
s2st_example_row,
|
408 |
-
s2tt_example_row,
|
409 |
-
t2st_example_row,
|
410 |
-
t2tt_example_row,
|
411 |
-
asr_example_row,
|
412 |
-
],
|
413 |
-
queue=False,
|
414 |
-
api_name=False,
|
415 |
-
)
|
416 |
|
417 |
-
btn.click(
|
418 |
-
fn=predict,
|
419 |
-
inputs=[
|
420 |
-
task_name,
|
421 |
-
audio_source,
|
422 |
-
input_audio_mic,
|
423 |
-
input_audio_file,
|
424 |
-
input_text,
|
425 |
-
source_language,
|
426 |
-
target_language,
|
427 |
-
],
|
428 |
-
outputs=[output_audio, output_text],
|
429 |
-
api_name="run",
|
430 |
-
)
|
431 |
-
demo.queue(max_size=50).launch()
|
432 |
|
433 |
-
#
|
434 |
-
|
435 |
-
# 'facebook/SONAR'
|
|
|
8 |
import torchaudio
|
9 |
from seamless_communication.models.inference.translator import Translator
|
10 |
|
11 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
p = pipeline("automatic-speech-recognition")
|
14 |
|
15 |
+
from pydub import AudioSegment
|
16 |
+
import time
|
17 |
+
from time import sleep
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
+
def transcribe(audio, state=""):
|
21 |
+
# sleep(2)
|
22 |
+
print('state', state)
|
23 |
+
text = p(audio)["text"]
|
24 |
+
state += text + " "
|
25 |
+
return state
|
26 |
|
27 |
+
def blocks():
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
total_audio_bytes_state = gr.State(bytes())
|
30 |
+
total_text_state = gr.State("")
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3")
|
33 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath", format="mp3", source="microphone", streaming=True)
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
stream_as_bytes_btn = gr.Button("Stream as Bytes")
|
37 |
+
stream_as_bytes_output = gr.Audio(format="bytes", streaming=True)
|
38 |
+
stream_output_text = gr.Textbox(label="Translated text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
+
def stream_bytes(audio_file, total_audio_bytes_state, total_text_state):
|
42 |
+
chunk_size = 30000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
print(f"audio_file {audio_file}, size {os.path.getsize(audio_file)}")
|
45 |
+
with open(audio_file, "rb") as f:
|
46 |
|
47 |
+
while True:
|
48 |
+
chunk = f.read(chunk_size)
|
49 |
+
if chunk:
|
50 |
+
total_audio_bytes_state += chunk
|
51 |
+
print('yielding chunk', len(chunk))
|
52 |
+
print('total audio bytes', len(total_audio_bytes_state))
|
53 |
+
print(f"Text state: {total_text_state}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# This does the whole thing every time
|
56 |
+
# total_text = transcribe(chunk, "")
|
57 |
+
# yield total_audio_bytes_state, total_text, total_audio_bytes_state, total_text_state
|
58 |
|
59 |
+
# This translates just the new part every time
|
60 |
+
total_text_state = transcribe(chunk, total_text_state)
|
61 |
+
total_text = total_text_state
|
62 |
+
# total_text = transcribe(chunk, total_text)
|
63 |
+
yield total_audio_bytes_state, total_text, total_audio_bytes_state, total_text_state
|
64 |
+
# sleep(3)
|
65 |
+
else:
|
66 |
+
break
|
67 |
+
def clear():
|
68 |
+
print('clearing')
|
69 |
+
return [bytes(), ""]
|
70 |
|
71 |
+
stream_as_bytes_btn.click(stream_bytes, [input_audio, total_audio_bytes_state, total_text_state], [stream_as_bytes_output, stream_output_text, total_audio_bytes_state, total_text_state])
|
72 |
|
73 |
+
input_audio.change(stream_bytes, [input_audio, total_audio_bytes_state, total_text_state], [stream_as_bytes_output, stream_output_text, total_audio_bytes_state, total_text_state])
|
74 |
+
input_audio.clear(clear, None, [total_audio_bytes_state, total_text_state])
|
75 |
+
input_audio.start_recording(clear, None, [total_audio_bytes_state, total_text_state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# if __name__ == "__main__":
|
82 |
+
blocks()
|
|
requirements.txt
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
fairseq2==0.1.0
|
2 |
git+https://github.com/facebookresearch/seamless_communication
|
3 |
-
gradio==3.
|
4 |
huggingface_hub==0.16.4
|
5 |
torch==2.0.1
|
6 |
torchaudio==2.0.2
|
|
|
|
|
|
1 |
fairseq2==0.1.0
|
2 |
git+https://github.com/facebookresearch/seamless_communication
|
3 |
+
gradio==3.41.0
|
4 |
huggingface_hub==0.16.4
|
5 |
torch==2.0.1
|
6 |
torchaudio==2.0.2
|
7 |
+
transformers==4.32.1
|
8 |
+
pydub
|