WIP
Browse files- Dockerfile +2 -0
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/app.cpython-38.pyc +0 -0
- __pycache__/simuleval_transcoder.cpython-310.pyc +0 -0
- __pycache__/simuleval_transcoder.cpython-38.pyc +0 -0
- app.py +123 -60
- internal_demo_simuleval_transcoder.py +0 -272
- requirements.txt +10 -7
- seamless_communication +0 -1
- simuleval_transcoder.py +420 -190
Dockerfile
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
| 2 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 3 |
RUN apt-get update && \
|
|
|
|
| 1 |
+
# TODO: This doesn't work, copied over from M4T but needs an update
|
| 2 |
+
|
| 3 |
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
| 4 |
ENV DEBIAN_FRONTEND=noninteractive
|
| 5 |
RUN apt-get update && \
|
__pycache__/app.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
|
__pycache__/app.cpython-38.pyc
ADDED
|
Binary file (2.47 kB). View file
|
|
|
__pycache__/simuleval_transcoder.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/simuleval_transcoder.cpython-310.pyc and b/__pycache__/simuleval_transcoder.cpython-310.pyc differ
|
|
|
__pycache__/simuleval_transcoder.cpython-38.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
app.py
CHANGED
|
@@ -6,101 +6,150 @@ import gradio as gr
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
import torchaudio
|
| 9 |
-
from seamless_communication.models.inference.translator import Translator
|
| 10 |
|
| 11 |
-
|
| 12 |
-
from m4t_app import *
|
| 13 |
from simuleval_transcoder import *
|
| 14 |
-
# from simuleval_transcoder import *
|
| 15 |
|
| 16 |
from pydub import AudioSegment
|
| 17 |
import time
|
| 18 |
from time import sleep
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
audio_source="microphone",
|
| 32 |
-
input_audio_mic=audio_file,
|
| 33 |
-
input_audio_file=None,
|
| 34 |
-
input_text="",
|
| 35 |
-
source_language="English",
|
| 36 |
-
target_language="Portuguese",
|
| 37 |
-
)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
audio_file, translated_audio_bytes_state, translated_text_state
|
| 42 |
):
|
| 43 |
-
translated_wav_segment, translated_text =
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
else:
|
| 51 |
|
| 52 |
-
translated_audio_bytes_state = (translated_audio_bytes_state[0], np.append(translated_audio_bytes_state[1], translated_wav_segment[1]))
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
return [
|
| 59 |
-
|
| 60 |
translated_wav_segment,
|
| 61 |
-
|
| 62 |
-
|
| 63 |
translated_audio_bytes_state,
|
| 64 |
translated_text_state,
|
| 65 |
]
|
| 66 |
|
| 67 |
|
| 68 |
def clear():
|
| 69 |
-
|
| 70 |
return [bytes(), ""]
|
| 71 |
|
| 72 |
|
| 73 |
def blocks():
|
| 74 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
translated_audio_bytes_state = gr.State(None)
|
| 76 |
translated_text_state = gr.State("")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
source="microphone",
|
| 92 |
-
streaming=True,
|
| 93 |
-
)
|
| 94 |
|
| 95 |
most_recent_input_audio_segment = gr.Audio(
|
| 96 |
label="Recent Input Audio Segment segments",
|
| 97 |
-
format="bytes",
|
| 98 |
streaming=True
|
| 99 |
)
|
| 100 |
-
# TODO: Should add combined input audio segments...
|
| 101 |
-
|
| 102 |
-
stream_as_bytes_btn = gr.Button("Translate most recent recording segment")
|
| 103 |
|
|
|
|
|
|
|
| 104 |
output_translation_segment = gr.Audio(
|
| 105 |
label="Translated audio segment",
|
| 106 |
autoplay=False,
|
|
@@ -119,7 +168,7 @@ def blocks():
|
|
| 119 |
stream_output_text = gr.Textbox(label="Translated text")
|
| 120 |
|
| 121 |
stream_as_bytes_btn.click(
|
| 122 |
-
|
| 123 |
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 124 |
[
|
| 125 |
most_recent_input_audio_segment,
|
|
@@ -131,8 +180,21 @@ def blocks():
|
|
| 131 |
],
|
| 132 |
)
|
| 133 |
|
| 134 |
-
input_audio.change(
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 137 |
[
|
| 138 |
most_recent_input_audio_segment,
|
|
@@ -143,8 +205,11 @@ def blocks():
|
|
| 143 |
translated_text_state,
|
| 144 |
],
|
| 145 |
)
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
| 148 |
input_audio.clear(
|
| 149 |
clear, None, [translated_audio_bytes_state, translated_text_state]
|
| 150 |
)
|
|
@@ -154,6 +219,4 @@ def blocks():
|
|
| 154 |
|
| 155 |
demo.queue().launch()
|
| 156 |
|
| 157 |
-
|
| 158 |
-
# if __name__ == "__main__":
|
| 159 |
blocks()
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
import torchaudio
|
|
|
|
| 9 |
|
|
|
|
|
|
|
| 10 |
from simuleval_transcoder import *
|
|
|
|
| 11 |
|
| 12 |
from pydub import AudioSegment
|
| 13 |
import time
|
| 14 |
from time import sleep
|
| 15 |
|
| 16 |
+
from seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t import (
|
| 17 |
+
TestTimeWaitKUnityS2TM4T,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
language_code_to_name = {
|
| 21 |
+
"cmn": "Mandarin Chinese",
|
| 22 |
+
"deu": "German",
|
| 23 |
+
"eng": "English",
|
| 24 |
+
"fra": "French",
|
| 25 |
+
"spa": "Spanish",
|
| 26 |
+
}
|
| 27 |
+
S2ST_TARGET_LANGUAGE_NAMES = language_code_to_name.values()
|
| 28 |
+
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
| 29 |
+
|
| 30 |
+
DEFAULT_TARGET_LANGUAGE = "English"
|
| 31 |
+
|
| 32 |
+
# TODO: Update this so it takes in target langs from input, refactor sample rate
|
| 33 |
+
transcoder = SimulevalTranscoder(
|
| 34 |
+
sample_rate=48_000,
|
| 35 |
+
debug=False,
|
| 36 |
+
buffer_limit=1,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
def start_recording():
|
| 40 |
+
logger.debug(f"start_recording: starting transcoder")
|
| 41 |
+
transcoder.start()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def translate_audio_segment(audio):
|
| 45 |
+
logger.debug(f"translate_audio_segment: incoming audio")
|
| 46 |
+
sample_rate, data = audio
|
| 47 |
+
|
| 48 |
+
transcoder.process_incoming_bytes(data.tobytes(), 'eng', sample_rate)
|
| 49 |
|
| 50 |
+
speech_and_text_output = transcoder.get_buffered_output()
|
| 51 |
+
if speech_and_text_output is None:
|
| 52 |
+
logger.debug("No output from transcoder.get_buffered_output()")
|
| 53 |
+
return None, None
|
| 54 |
|
| 55 |
+
logger.debug(f"We DID get output from the transcoder! {speech_and_text_output}")
|
| 56 |
|
| 57 |
+
text = None
|
| 58 |
+
speech = None
|
| 59 |
|
| 60 |
+
if speech_and_text_output.speech_samples:
|
| 61 |
+
speech = (speech_and_text_output.speech_samples, speech_and_text_output.speech_sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
if speech_and_text_output.text:
|
| 64 |
+
text = speech_and_text_output.text
|
| 65 |
+
if speech_and_text_output.final:
|
| 66 |
+
text += "\n"
|
| 67 |
|
| 68 |
+
return speech, text
|
| 69 |
+
|
| 70 |
+
def streaming_input_callback(
|
| 71 |
audio_file, translated_audio_bytes_state, translated_text_state
|
| 72 |
):
|
| 73 |
+
translated_wav_segment, translated_text = translate_audio_segment(audio_file)
|
| 74 |
+
logger.debug(f'translated_audio_bytes_state {translated_audio_bytes_state}')
|
| 75 |
+
logger.debug(f'translated_wav_segment {translated_wav_segment}')
|
| 76 |
+
|
| 77 |
+
# TODO: accumulate each segment to provide a continuous audio segment
|
| 78 |
|
| 79 |
+
if translated_wav_segment is not None:
|
| 80 |
+
sample_rate, audio_bytes = translated_wav_segment
|
| 81 |
+
audio_np_array = np.frombuffer(audio_bytes, dtype=np.float32, count=3)
|
|
|
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
+
# combine translated wav
|
| 85 |
+
if type(translated_audio_bytes_state) is not tuple:
|
| 86 |
+
translated_audio_bytes_state = (sample_rate, audio_np_array)
|
| 87 |
+
# translated_audio_bytes_state = np.array([])
|
| 88 |
+
else:
|
| 89 |
+
|
| 90 |
+
translated_audio_bytes_state = (translated_audio_bytes_state[0], np.append(translated_audio_bytes_state[1], translated_wav_segment[1]))
|
| 91 |
|
| 92 |
+
if translated_text is not None:
|
| 93 |
+
translated_text_state += " | " + str(translated_text)
|
| 94 |
|
| 95 |
+
# most_recent_input_audio_segment = (most_recent_input_audio_segment[0], np.append(most_recent_input_audio_segment[1], audio_file[1]))
|
| 96 |
+
|
| 97 |
+
# Not necessary but for readability.
|
| 98 |
+
most_recent_input_audio_segment = audio_file
|
| 99 |
+
translated_wav_segment = translated_wav_segment
|
| 100 |
+
output_translation_combined = translated_audio_bytes_state
|
| 101 |
+
stream_output_text = translated_text_state
|
| 102 |
return [
|
| 103 |
+
most_recent_input_audio_segment,
|
| 104 |
translated_wav_segment,
|
| 105 |
+
output_translation_combined,
|
| 106 |
+
stream_output_text,
|
| 107 |
translated_audio_bytes_state,
|
| 108 |
translated_text_state,
|
| 109 |
]
|
| 110 |
|
| 111 |
|
| 112 |
def clear():
|
| 113 |
+
logger.debug(f"Clearing State")
|
| 114 |
return [bytes(), ""]
|
| 115 |
|
| 116 |
|
| 117 |
def blocks():
|
| 118 |
with gr.Blocks() as demo:
|
| 119 |
+
|
| 120 |
+
with gr.Row():
|
| 121 |
+
# Hook this up once supported
|
| 122 |
+
target_language = gr.Dropdown(
|
| 123 |
+
label="Target language",
|
| 124 |
+
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
| 125 |
+
value=DEFAULT_TARGET_LANGUAGE,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
translated_audio_bytes_state = gr.State(None)
|
| 129 |
translated_text_state = gr.State("")
|
| 130 |
|
| 131 |
+
input_audio = gr.Audio(
|
| 132 |
+
label="Input Audio",
|
| 133 |
+
# source="microphone", # gradio==3.41.0
|
| 134 |
+
sources=["microphone"], # new gradio seems to call this less often...
|
| 135 |
+
streaming=True,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# input_audio = gr.Audio(
|
| 139 |
+
# label="Input Audio",
|
| 140 |
+
# type="filepath",
|
| 141 |
+
# source="microphone",
|
| 142 |
+
# streaming=True,
|
| 143 |
+
# )
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
most_recent_input_audio_segment = gr.Audio(
|
| 146 |
label="Recent Input Audio Segment segments",
|
| 147 |
+
# format="bytes",
|
| 148 |
streaming=True
|
| 149 |
)
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Force translate
|
| 152 |
+
stream_as_bytes_btn = gr.Button("Force translate most recent recording segment (ask for model output)")
|
| 153 |
output_translation_segment = gr.Audio(
|
| 154 |
label="Translated audio segment",
|
| 155 |
autoplay=False,
|
|
|
|
| 168 |
stream_output_text = gr.Textbox(label="Translated text")
|
| 169 |
|
| 170 |
stream_as_bytes_btn.click(
|
| 171 |
+
streaming_input_callback,
|
| 172 |
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 173 |
[
|
| 174 |
most_recent_input_audio_segment,
|
|
|
|
| 180 |
],
|
| 181 |
)
|
| 182 |
|
| 183 |
+
# input_audio.change(
|
| 184 |
+
# streaming_input_callback,
|
| 185 |
+
# [input_audio, translated_audio_bytes_state, translated_text_state],
|
| 186 |
+
# [
|
| 187 |
+
# most_recent_input_audio_segment,
|
| 188 |
+
# output_translation_segment,
|
| 189 |
+
# output_translation_combined,
|
| 190 |
+
# stream_output_text,
|
| 191 |
+
# translated_audio_bytes_state,
|
| 192 |
+
# translated_text_state,
|
| 193 |
+
# ],
|
| 194 |
+
# )
|
| 195 |
+
|
| 196 |
+
input_audio.stream(
|
| 197 |
+
streaming_input_callback,
|
| 198 |
[input_audio, translated_audio_bytes_state, translated_text_state],
|
| 199 |
[
|
| 200 |
most_recent_input_audio_segment,
|
|
|
|
| 205 |
translated_text_state,
|
| 206 |
],
|
| 207 |
)
|
| 208 |
+
|
| 209 |
+
input_audio.start_recording(
|
| 210 |
+
start_recording,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
input_audio.clear(
|
| 214 |
clear, None, [translated_audio_bytes_state, translated_text_state]
|
| 215 |
)
|
|
|
|
| 219 |
|
| 220 |
demo.queue().launch()
|
| 221 |
|
|
|
|
|
|
|
| 222 |
blocks()
|
internal_demo_simuleval_transcoder.py
DELETED
|
@@ -1,272 +0,0 @@
|
|
| 1 |
-
from simuleval.utils.agent import build_system_from_dir
|
| 2 |
-
from typing import Any, Tuple
|
| 3 |
-
import numpy as np
|
| 4 |
-
import soundfile
|
| 5 |
-
from fairseq.data.audio.audio_utils import convert_waveform
|
| 6 |
-
import io
|
| 7 |
-
import asyncio
|
| 8 |
-
from simuleval.data.segments import SpeechSegment, EmptySegment
|
| 9 |
-
import threading
|
| 10 |
-
import math
|
| 11 |
-
import logging
|
| 12 |
-
import sys
|
| 13 |
-
from pathlib import Path
|
| 14 |
-
import time
|
| 15 |
-
from g2p_en import G2p
|
| 16 |
-
import torch
|
| 17 |
-
import traceback
|
| 18 |
-
import time
|
| 19 |
-
import random
|
| 20 |
-
|
| 21 |
-
from .speech_and_text_output import SpeechAndTextOutput
|
| 22 |
-
|
| 23 |
-
MODEL_SAMPLE_RATE = 16_000
|
| 24 |
-
|
| 25 |
-
logger = logging.getLogger()
|
| 26 |
-
logger.addHandler(logging.StreamHandler(sys.stdout))
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class SimulevalTranscoder:
|
| 30 |
-
def __init__(self, agent, sample_rate, debug, buffer_limit):
|
| 31 |
-
self.agent = agent
|
| 32 |
-
self.input_queue = asyncio.Queue()
|
| 33 |
-
self.output_queue = asyncio.Queue()
|
| 34 |
-
self.states = self.agent.build_states()
|
| 35 |
-
if debug:
|
| 36 |
-
self.states[0].debug = True
|
| 37 |
-
self.incoming_sample_rate = sample_rate
|
| 38 |
-
self.close = False
|
| 39 |
-
self.g2p = G2p()
|
| 40 |
-
|
| 41 |
-
# buffer all outgoing translations within this amount of time
|
| 42 |
-
self.output_buffer_idle_ms = 5000
|
| 43 |
-
self.output_buffer_size_limit = (
|
| 44 |
-
buffer_limit # phonemes for text, seconds for speech
|
| 45 |
-
)
|
| 46 |
-
self.output_buffer_cur_size = 0
|
| 47 |
-
self.output_buffer = []
|
| 48 |
-
self.speech_output_sample_rate = None
|
| 49 |
-
|
| 50 |
-
self.last_output_ts = time.time() * 1000
|
| 51 |
-
self.timeout_ms = (
|
| 52 |
-
30000 # close the transcoder thread after this amount of silence
|
| 53 |
-
)
|
| 54 |
-
self.first_input_ts = None
|
| 55 |
-
self.first_output_ts = None
|
| 56 |
-
self.output_data_type = None # speech or text
|
| 57 |
-
self.debug = debug
|
| 58 |
-
self.debug_ts = f"{time.time()}_{random.randint(1000, 9999)}"
|
| 59 |
-
if self.debug:
|
| 60 |
-
debug_folder = Path(__file__).resolve().parent.parent / "debug"
|
| 61 |
-
self.test_incoming_wav = soundfile.SoundFile(
|
| 62 |
-
debug_folder / f"{self.debug_ts}_test_incoming.wav",
|
| 63 |
-
mode="w+",
|
| 64 |
-
format="WAV",
|
| 65 |
-
subtype="PCM_16",
|
| 66 |
-
samplerate=self.incoming_sample_rate,
|
| 67 |
-
channels=1,
|
| 68 |
-
)
|
| 69 |
-
self.states[0].test_input_segments_wav = soundfile.SoundFile(
|
| 70 |
-
debug_folder / f"{self.debug_ts}_test_input_segments.wav",
|
| 71 |
-
mode="w+",
|
| 72 |
-
format="WAV",
|
| 73 |
-
samplerate=MODEL_SAMPLE_RATE,
|
| 74 |
-
channels=1,
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
def debug_log(self, *args):
|
| 78 |
-
if self.debug:
|
| 79 |
-
logger.info(*args)
|
| 80 |
-
|
| 81 |
-
@classmethod
|
| 82 |
-
def build_agent(cls, model_path):
|
| 83 |
-
logger.info(f"Building simuleval agent: {model_path}")
|
| 84 |
-
agent = build_system_from_dir(
|
| 85 |
-
Path(__file__).resolve().parent.parent / f"models/{model_path}",
|
| 86 |
-
config_name="vad_main.yaml",
|
| 87 |
-
)
|
| 88 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
-
agent.to(device, fp16=True)
|
| 90 |
-
logger.info(
|
| 91 |
-
f"Successfully built simuleval agent {model_path} on device {device}"
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
return agent
|
| 95 |
-
|
| 96 |
-
def process_incoming_bytes(self, incoming_bytes):
|
| 97 |
-
segment, _sr = self._preprocess_wav(incoming_bytes)
|
| 98 |
-
# # segment is array([0, 0, 0, ..., 0, 0, 0], dtype=int16)
|
| 99 |
-
self.input_queue.put_nowait(segment)
|
| 100 |
-
|
| 101 |
-
def get_input_segment(self):
|
| 102 |
-
if self.input_queue.empty():
|
| 103 |
-
return None
|
| 104 |
-
chunk = self.input_queue.get_nowait()
|
| 105 |
-
self.input_queue.task_done()
|
| 106 |
-
return chunk
|
| 107 |
-
|
| 108 |
-
def _preprocess_wav(self, data: Any) -> Tuple[np.ndarray, int]:
|
| 109 |
-
segment, sample_rate = soundfile.read(
|
| 110 |
-
io.BytesIO(data),
|
| 111 |
-
dtype="float32",
|
| 112 |
-
always_2d=True,
|
| 113 |
-
frames=-1,
|
| 114 |
-
start=0,
|
| 115 |
-
format="RAW",
|
| 116 |
-
subtype="PCM_16",
|
| 117 |
-
samplerate=self.incoming_sample_rate,
|
| 118 |
-
channels=1,
|
| 119 |
-
)
|
| 120 |
-
if self.debug:
|
| 121 |
-
self.test_incoming_wav.seek(0, soundfile.SEEK_END)
|
| 122 |
-
self.test_incoming_wav.write(segment)
|
| 123 |
-
|
| 124 |
-
segment = segment.T
|
| 125 |
-
segment, new_sample_rate = convert_waveform(
|
| 126 |
-
segment,
|
| 127 |
-
sample_rate,
|
| 128 |
-
normalize_volume=False,
|
| 129 |
-
to_mono=True,
|
| 130 |
-
to_sample_rate=MODEL_SAMPLE_RATE,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
assert MODEL_SAMPLE_RATE == new_sample_rate
|
| 134 |
-
segment = segment.squeeze(axis=0)
|
| 135 |
-
return segment, new_sample_rate
|
| 136 |
-
|
| 137 |
-
def process_pipeline_impl(self, input_segment):
|
| 138 |
-
try:
|
| 139 |
-
output_segment = self.agent.pushpop(input_segment, self.states)
|
| 140 |
-
if (
|
| 141 |
-
self.states[0].first_input_ts is not None
|
| 142 |
-
and self.first_input_ts is None
|
| 143 |
-
):
|
| 144 |
-
# TODO: this is hacky
|
| 145 |
-
self.first_input_ts = self.states[0].first_input_ts
|
| 146 |
-
|
| 147 |
-
if not output_segment.is_empty:
|
| 148 |
-
self.output_queue.put_nowait(output_segment)
|
| 149 |
-
|
| 150 |
-
if output_segment.finished:
|
| 151 |
-
self.debug_log("OUTPUT SEGMENT IS FINISHED. Resetting states.")
|
| 152 |
-
|
| 153 |
-
for state in self.states:
|
| 154 |
-
state.reset()
|
| 155 |
-
|
| 156 |
-
if self.debug:
|
| 157 |
-
# when we rebuild states, this value is reset to whatever
|
| 158 |
-
# is in the system dir config, which defaults debug=False.
|
| 159 |
-
self.states[0].debug = True
|
| 160 |
-
except Exception as e:
|
| 161 |
-
logger.error(f"Got exception while processing pipeline: {e}")
|
| 162 |
-
traceback.print_exc()
|
| 163 |
-
return input_segment
|
| 164 |
-
|
| 165 |
-
def process_pipeline_loop(self):
|
| 166 |
-
if self.close:
|
| 167 |
-
return # closes the thread
|
| 168 |
-
|
| 169 |
-
self.debug_log("processing_pipeline")
|
| 170 |
-
while not self.close:
|
| 171 |
-
input_segment = self.get_input_segment()
|
| 172 |
-
if input_segment is None:
|
| 173 |
-
if self.states[0].is_fresh_state: # TODO: this is hacky
|
| 174 |
-
time.sleep(0.3)
|
| 175 |
-
else:
|
| 176 |
-
time.sleep(0.03)
|
| 177 |
-
continue
|
| 178 |
-
self.process_pipeline_impl(input_segment)
|
| 179 |
-
self.debug_log("finished processing_pipeline")
|
| 180 |
-
|
| 181 |
-
def process_pipeline_once(self):
|
| 182 |
-
if self.close:
|
| 183 |
-
return
|
| 184 |
-
|
| 185 |
-
self.debug_log("processing pipeline once")
|
| 186 |
-
input_segment = self.get_input_segment()
|
| 187 |
-
if input_segment is None:
|
| 188 |
-
return
|
| 189 |
-
self.process_pipeline_impl(input_segment)
|
| 190 |
-
self.debug_log("finished processing_pipeline_once")
|
| 191 |
-
|
| 192 |
-
def get_output_segment(self):
|
| 193 |
-
if self.output_queue.empty():
|
| 194 |
-
return None
|
| 195 |
-
|
| 196 |
-
output_chunk = self.output_queue.get_nowait()
|
| 197 |
-
self.output_queue.task_done()
|
| 198 |
-
return output_chunk
|
| 199 |
-
|
| 200 |
-
def start(self):
|
| 201 |
-
self.debug_log("starting transcoder in a thread")
|
| 202 |
-
threading.Thread(target=self.process_pipeline_loop).start()
|
| 203 |
-
|
| 204 |
-
def first_translation_time(self):
|
| 205 |
-
return round((self.first_output_ts - self.first_input_ts) / 1000, 2)
|
| 206 |
-
|
| 207 |
-
def get_buffered_output(self) -> SpeechAndTextOutput:
|
| 208 |
-
now = time.time() * 1000
|
| 209 |
-
self.debug_log(f"get_buffered_output queue size: {self.output_queue.qsize()}")
|
| 210 |
-
while not self.output_queue.empty():
|
| 211 |
-
tmp_out = self.get_output_segment()
|
| 212 |
-
if tmp_out and len(tmp_out.content) > 0:
|
| 213 |
-
if not self.output_data_type:
|
| 214 |
-
self.output_data_type = tmp_out.data_type
|
| 215 |
-
if len(self.output_buffer) == 0:
|
| 216 |
-
self.last_output_ts = now
|
| 217 |
-
self._populate_output_buffer(tmp_out)
|
| 218 |
-
self._increment_output_buffer_size(tmp_out)
|
| 219 |
-
|
| 220 |
-
if tmp_out.finished:
|
| 221 |
-
res = self._gather_output_buffer_data(final=True)
|
| 222 |
-
self.output_buffer = []
|
| 223 |
-
self.increment_output_buffer_size = 0
|
| 224 |
-
self.last_output_ts = now
|
| 225 |
-
self.first_output_ts = now
|
| 226 |
-
return res
|
| 227 |
-
|
| 228 |
-
if len(self.output_buffer) > 0 and (
|
| 229 |
-
now - self.last_output_ts >= self.output_buffer_idle_ms
|
| 230 |
-
or self.output_buffer_cur_size >= self.output_buffer_size_limit
|
| 231 |
-
):
|
| 232 |
-
self.last_output_ts = now
|
| 233 |
-
res = self._gather_output_buffer_data(final=False)
|
| 234 |
-
self.output_buffer = []
|
| 235 |
-
self.output_buffer_phoneme_count = 0
|
| 236 |
-
self.first_output_ts = now
|
| 237 |
-
return res
|
| 238 |
-
else:
|
| 239 |
-
return None
|
| 240 |
-
|
| 241 |
-
def _gather_output_buffer_data(self, final):
|
| 242 |
-
if self.output_data_type == "text":
|
| 243 |
-
return SpeechAndTextOutput(text=" ".join(self.output_buffer), final=final)
|
| 244 |
-
elif self.output_data_type == "speech":
|
| 245 |
-
return SpeechAndTextOutput(
|
| 246 |
-
speech_samples=self.output_buffer,
|
| 247 |
-
speech_sample_rate=MODEL_SAMPLE_RATE,
|
| 248 |
-
final=final,
|
| 249 |
-
)
|
| 250 |
-
else:
|
| 251 |
-
raise ValueError(
|
| 252 |
-
f"Invalid output buffer data type: {self.output_data_type}"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
def _increment_output_buffer_size(self, segment):
|
| 256 |
-
if segment.data_type == "text":
|
| 257 |
-
self.output_buffer_cur_size += self._compute_phoneme_count(segment.content)
|
| 258 |
-
elif segment.data_type == "speech":
|
| 259 |
-
self.output_buffer_cur_size += (
|
| 260 |
-
len(segment.content) / MODEL_SAMPLE_RATE
|
| 261 |
-
) # seconds
|
| 262 |
-
|
| 263 |
-
def _populate_output_buffer(self, segment):
|
| 264 |
-
if segment.data_type == "text":
|
| 265 |
-
self.output_buffer.append(segment.content)
|
| 266 |
-
elif segment.data_type == "speech":
|
| 267 |
-
self.output_buffer += segment.content
|
| 268 |
-
else:
|
| 269 |
-
raise ValueError(f"Invalid segment data type: {segment.data_type}")
|
| 270 |
-
|
| 271 |
-
def _compute_phoneme_count(self, string: str) -> int:
|
| 272 |
-
return len([x for x in self.g2p(string) if x != " "])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,18 +1,21 @@
|
|
|
|
|
|
|
|
| 1 |
# fairseq2==0.1.0
|
| 2 |
|
| 3 |
-
# Temp to skip
|
| 4 |
-
# git+https://github.com/mduppes/fairseq2.git@93420c86ba01349ee8f90d7adda439b666b50557
|
| 5 |
# git+https://github.com/facebookresearch/seamless_communication
|
| 6 |
-
./
|
|
|
|
| 7 |
# comment this out to test fairseq1 first
|
| 8 |
# git+https://github.com/facebookresearch/SimulEval.git
|
| 9 |
gradio==3.41.0
|
| 10 |
huggingface_hub==0.16.4
|
| 11 |
-
torch==2.0
|
| 12 |
-
torchaudio==2.0.2
|
| 13 |
-
transformers==4.32.1
|
| 14 |
pydub
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Can't import fairseq1 together.. causes conflict:
|
| 18 |
#The conflict is caused by:
|
|
|
|
| 1 |
+
# TODO: fairseq2 install is complicated so currently done outside
|
| 2 |
+
|
| 3 |
# fairseq2==0.1.0
|
| 4 |
|
|
|
|
|
|
|
| 5 |
# git+https://github.com/facebookresearch/seamless_communication
|
| 6 |
+
# ./fairseq2
|
| 7 |
+
# ./seamless_communication
|
| 8 |
# comment this out to test fairseq1 first
|
| 9 |
# git+https://github.com/facebookresearch/SimulEval.git
|
| 10 |
gradio==3.41.0
|
| 11 |
huggingface_hub==0.16.4
|
| 12 |
+
# torch==2.1.0
|
| 13 |
+
# torchaudio==2.0.2
|
| 14 |
+
# transformers==4.32.1
|
| 15 |
pydub
|
| 16 |
+
g2p_en
|
| 17 |
+
colorlog
|
| 18 |
+
# git+ssh://[email protected]/facebookresearch/SimulEval.git
|
| 19 |
|
| 20 |
# Can't import fairseq1 together.. causes conflict:
|
| 21 |
#The conflict is caused by:
|
seamless_communication
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
Subproject commit 02405dfd0c187d625aa66255ff8c39f98031a091
|
|
|
|
|
|
simuleval_transcoder.py
CHANGED
|
@@ -1,225 +1,455 @@
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
-
|
| 4 |
-
|
| 5 |
import torch
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from torch import Tensor
|
| 16 |
-
from enum import Enum, auto
|
| 17 |
-
from seamless_communication.models.inference.ngram_repeat_block_processor import (
|
| 18 |
-
NGramRepeatBlockProcessor,
|
| 19 |
)
|
| 20 |
|
| 21 |
-
from
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
)
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
TestTimeWaitKUnityS2TM4T,
|
| 42 |
-
)
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
from simuleval.utils import build_system_from_dir
|
| 52 |
-
from pathlib import Path
|
| 53 |
-
import numpy as np
|
| 54 |
|
| 55 |
-
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
# print(len(self.samples), self.samples[:100])
|
| 59 |
-
self.samples = self.samples.tolist()
|
| 60 |
-
self.segment_size = segment_size
|
| 61 |
-
self.step = 0
|
| 62 |
-
def send_segment(self):
|
| 63 |
-
"""
|
| 64 |
-
This is the front-end logic in simuleval instance.py
|
| 65 |
-
"""
|
| 66 |
-
num_samples = math.ceil(self.segment_size / 1000 * self.sample_rate)
|
| 67 |
-
print("self.segment_size", self.segment_size)
|
| 68 |
-
print('num_samples is', num_samples)
|
| 69 |
-
print('self.sample_rate is', self.sample_rate)
|
| 70 |
-
if self.step < len(self.samples):
|
| 71 |
-
if self.step + num_samples >= len(self.samples):
|
| 72 |
-
samples = self.samples[self.step :]
|
| 73 |
-
is_finished = True
|
| 74 |
-
else:
|
| 75 |
-
samples = self.samples[self.step : self.step + num_samples]
|
| 76 |
-
is_finished = False
|
| 77 |
-
self.step = min(self.step + num_samples, len(self.samples))
|
| 78 |
-
# print("len(samples) is", len(samples))
|
| 79 |
-
# import pdb
|
| 80 |
-
# pdb.set_trace()
|
| 81 |
-
segment = SpeechSegment(
|
| 82 |
-
index=self.step / self.sample_rate * 1000,
|
| 83 |
-
content=samples,
|
| 84 |
-
sample_rate=self.sample_rate,
|
| 85 |
-
finished=is_finished,
|
| 86 |
-
)
|
| 87 |
-
else:
|
| 88 |
-
# Finish reading this audio
|
| 89 |
-
segment = EmptySegment(
|
| 90 |
-
index=self.step / self.sample_rate * 1000,
|
| 91 |
-
finished=True,
|
| 92 |
-
)
|
| 93 |
-
return segment
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
data_configs = dict(
|
| 109 |
-
dataloader="fairseq2_s2t",
|
| 110 |
-
data_file="/large_experiments/seamless/ust/abinesh/data/s2st50_manifests/50-10/simuleval/dev_mtedx_filt_50-10_debug.tsv",
|
| 111 |
-
)
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
source_segment_size=320,
|
| 117 |
-
waitk_lagging=7,
|
| 118 |
-
fixed_pre_decision_ratio=2,
|
| 119 |
-
init_target_tokens="</s> __eng__",
|
| 120 |
-
max_len_a=0,
|
| 121 |
-
max_len_b=200,
|
| 122 |
-
agent_class="seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t.TestTimeWaitKUnityS2TM4T",
|
| 123 |
-
task="s2st",
|
| 124 |
-
tgt_lang="eng",
|
| 125 |
-
)
|
| 126 |
|
| 127 |
-
eval_configs = dict(
|
| 128 |
-
latency_metrics="StartOffset EndOffset AL",
|
| 129 |
-
output=f"{TestTimeWaitKUnityS2TM4T.__name__}-wait{model_configs['waitk_lagging']}-debug",
|
| 130 |
-
)
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
class SimulevalTranscoder:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
# For CPU Mode need to use 32, float16 causes errors downstream
|
| 155 |
-
dtype=dtype=torch.float32
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
)
|
|
|
|
|
|
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
)
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
print('system states:')
|
| 191 |
-
for state in system_states:
|
| 192 |
-
print(state, vars(state))
|
| 193 |
-
|
| 194 |
-
input_segment = np.empty(0, dtype=np.int16)
|
| 195 |
-
segments = []
|
| 196 |
-
while True:
|
| 197 |
-
speech_segment = audio_frontend.send_segment()
|
| 198 |
-
input_segment = np.concatenate((input_segment, np.array(speech_segment.content)))
|
| 199 |
-
# Translation happens here
|
| 200 |
-
output_segment = pipeline.pushpop(speech_segment, system_states)
|
| 201 |
-
print('pushpop result')
|
| 202 |
-
print(output_segment)
|
| 203 |
-
print('system states after pushpop:')
|
| 204 |
-
for state in system_states:
|
| 205 |
-
print(state, vars(state))
|
| 206 |
if output_segment.finished:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
from typing import Any, List, Tuple, Union, Optional
|
| 3 |
+
import numpy as np
|
| 4 |
+
import soundfile
|
| 5 |
+
import io
|
| 6 |
+
import asyncio
|
| 7 |
+
from simuleval.agents.pipeline import TreeAgentPipeline
|
| 8 |
+
from simuleval.agents.states import AgentStates
|
| 9 |
+
from simuleval.data.segments import Segment, EmptySegment, SpeechSegment
|
| 10 |
+
import threading
|
| 11 |
+
import math
|
| 12 |
+
import logging
|
| 13 |
+
import sys
|
| 14 |
from pathlib import Path
|
| 15 |
+
import time
|
| 16 |
+
from g2p_en import G2p
|
| 17 |
import torch
|
| 18 |
+
import traceback
|
| 19 |
+
import time
|
| 20 |
+
import random
|
| 21 |
+
import colorlog
|
| 22 |
+
|
| 23 |
+
# Sanity check that pipeline is loadable
|
| 24 |
+
from seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t import (
|
| 25 |
+
# TestTimeWaitKUnityS2TM4T,
|
| 26 |
+
TestTimeWaitKUnityS2TM4TVAD
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
+
from simuleval.utils.agent import build_system_args
|
| 30 |
+
|
| 31 |
+
MODEL_SAMPLE_RATE = 16_000
|
| 32 |
+
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
logger.propagate = False
|
| 35 |
+
handler = colorlog.StreamHandler(stream=sys.stdout)
|
| 36 |
+
formatter = colorlog.ColoredFormatter(
|
| 37 |
+
"%(log_color)s[%(asctime)s][%(levelname)s][%(module)s]:%(reset)s %(message)s",
|
| 38 |
+
reset=True,
|
| 39 |
+
log_colors={
|
| 40 |
+
"DEBUG": "cyan",
|
| 41 |
+
"INFO": "green",
|
| 42 |
+
"WARNING": "yellow",
|
| 43 |
+
"ERROR": "red",
|
| 44 |
+
"CRITICAL": "red,bg_white",
|
| 45 |
+
},
|
| 46 |
)
|
| 47 |
+
handler.setFormatter(formatter)
|
| 48 |
+
logger.addHandler(handler)
|
| 49 |
+
logger.setLevel(logging.DEBUG)
|
| 50 |
|
| 51 |
|
| 52 |
+
# TODO: Integrate this better so target lang and others can be changed. Also currently dependent on devserver internals
|
| 53 |
+
def build_agent():
|
| 54 |
+
config = {
|
| 55 |
+
'dataloader': 'fairseq2_s2t',
|
| 56 |
+
'data_file': '/large_experiments/seamless/ust/abinesh/data/s2st50_manifests/50-10/simuleval/dev_mtedx_filt_50-10_debug.tsv',
|
| 57 |
+
'model_name': 'seamlessM4T_v2_large',
|
| 58 |
+
'device': 'cuda:0',
|
| 59 |
+
'source_segment_size': 320,
|
| 60 |
+
'waitk_lagging': 7,
|
| 61 |
+
'fixed_pre_decision_ratio': 2,
|
| 62 |
+
'init_target_tokens': '</s> __eng__',
|
| 63 |
+
'max_len_a': 0,
|
| 64 |
+
'max_len_b': 200,
|
| 65 |
+
'agent_class': 'seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t.TestTimeWaitKUnityS2TM4TVAD',
|
| 66 |
+
'task': 's2st',
|
| 67 |
+
'tgt_lang': 'eng',
|
| 68 |
+
'latency_metrics': 'StartOffset EndOffset AL',
|
| 69 |
+
'output': 'TestTimeWaitKUnityS2TM4TVAD-wait7-debug'
|
| 70 |
+
}
|
| 71 |
|
| 72 |
+
agent , _ = build_system_args(config)
|
| 73 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 74 |
+
# agent.to(device, fp16=True)
|
| 75 |
+
logger.info(
|
| 76 |
+
f"Successfully built simuleval agent"
|
| 77 |
+
)
|
| 78 |
|
| 79 |
+
return agent
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
class SpeechAndTextOutput:
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
text: str = None,
|
| 85 |
+
speech_samples: list = None,
|
| 86 |
+
speech_sample_rate: float = None,
|
| 87 |
+
final: bool = False,
|
| 88 |
+
):
|
| 89 |
+
self.text = text
|
| 90 |
+
self.speech_samples = speech_samples
|
| 91 |
+
self.speech_sample_rate = speech_sample_rate
|
| 92 |
+
self.final = final
|
| 93 |
|
| 94 |
+
class OutputSegments:
|
| 95 |
+
def __init__(self, segments: Union[List[Segment], Segment]):
|
| 96 |
+
if isinstance(segments, Segment):
|
| 97 |
+
segments = [segments]
|
| 98 |
+
self.segments: List[Segment] = [s for s in segments]
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
@property
|
| 101 |
+
def is_empty(self):
|
| 102 |
+
return all(segment.is_empty for segment in self.segments)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
@property
|
| 105 |
+
def finished(self):
|
| 106 |
+
return all(segment.finished for segment in self.segments)
|
| 107 |
|
| 108 |
+
def compute_length(self, g2p):
|
| 109 |
+
lengths = []
|
| 110 |
+
for segment in self.segments:
|
| 111 |
+
if segment.data_type == "text":
|
| 112 |
+
lengths.append(len([x for x in g2p(segment.content) if x != " "]))
|
| 113 |
+
elif segment.data_type == "speech":
|
| 114 |
+
lengths.append(len(segment.content) / MODEL_SAMPLE_RATE)
|
| 115 |
+
elif isinstance(segment, EmptySegment):
|
| 116 |
+
continue
|
| 117 |
+
else:
|
| 118 |
+
logger.warning(
|
| 119 |
+
f"Unexpected data_type: {segment.data_type} not in 'speech', 'text'"
|
| 120 |
+
)
|
| 121 |
+
return max(lengths)
|
| 122 |
|
| 123 |
+
@classmethod
|
| 124 |
+
def join_output_buffer(
|
| 125 |
+
cls, buffer: List[List[Segment]], output: SpeechAndTextOutput
|
| 126 |
+
):
|
| 127 |
+
num_segments = len(buffer[0])
|
| 128 |
+
for i in range(num_segments):
|
| 129 |
+
segment_list = [
|
| 130 |
+
buffer[j][i]
|
| 131 |
+
for j in range(len(buffer))
|
| 132 |
+
if buffer[j][i].data_type is not None
|
| 133 |
+
]
|
| 134 |
+
if len(segment_list) == 0:
|
| 135 |
+
continue
|
| 136 |
+
if len(set(segment.data_type for segment in segment_list)) != 1:
|
| 137 |
+
logger.warning(
|
| 138 |
+
f"Data type mismatch at {i}: {set(segment.data_type for segment in segment_list)}"
|
| 139 |
+
)
|
| 140 |
+
continue
|
| 141 |
+
data_type = segment_list[0].data_type
|
| 142 |
+
if data_type == "text":
|
| 143 |
+
if output.text is not None:
|
| 144 |
+
logger.warning("Multiple text outputs, overwriting!")
|
| 145 |
+
output.text = " ".join([segment.content for segment in segment_list])
|
| 146 |
+
elif data_type == "speech":
|
| 147 |
+
if output.speech_samples is not None:
|
| 148 |
+
logger.warning("Multiple speech outputs, overwriting!")
|
| 149 |
+
speech_out = []
|
| 150 |
+
for segment in segment_list:
|
| 151 |
+
speech_out += segment.content
|
| 152 |
+
output.speech_samples = speech_out
|
| 153 |
+
output.speech_sample_rate = MODEL_SAMPLE_RATE
|
| 154 |
+
elif isinstance(segment_list[0], EmptySegment):
|
| 155 |
+
continue
|
| 156 |
+
else:
|
| 157 |
+
logger.warning(
|
| 158 |
+
f"Invalid output buffer data type: {data_type}, expected 'speech' or 'text"
|
| 159 |
+
)
|
| 160 |
|
| 161 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
def __repr__(self) -> str:
|
| 164 |
+
repr_str = str(self.segments)
|
| 165 |
+
return f"{self.__class__.__name__}(\n\t{repr_str}\n)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
def convert_waveform(
|
| 169 |
+
waveform: Union[np.ndarray, torch.Tensor],
|
| 170 |
+
sample_rate: int,
|
| 171 |
+
normalize_volume: bool = False,
|
| 172 |
+
to_mono: bool = False,
|
| 173 |
+
to_sample_rate: Optional[int] = None,
|
| 174 |
+
) -> Tuple[Union[np.ndarray, torch.Tensor], int]:
|
| 175 |
+
"""convert a waveform:
|
| 176 |
+
- to a target sample rate
|
| 177 |
+
- from multi-channel to mono channel
|
| 178 |
+
- volume normalization
|
| 179 |
|
| 180 |
+
Args:
|
| 181 |
+
waveform (numpy.ndarray or torch.Tensor): 2D original waveform
|
| 182 |
+
(channels x length)
|
| 183 |
+
sample_rate (int): original sample rate
|
| 184 |
+
normalize_volume (bool): perform volume normalization
|
| 185 |
+
to_mono (bool): convert to mono channel if having multiple channels
|
| 186 |
+
to_sample_rate (Optional[int]): target sample rate
|
| 187 |
+
Returns:
|
| 188 |
+
waveform (numpy.ndarray): converted 2D waveform (channels x length)
|
| 189 |
+
sample_rate (float): target sample rate
|
| 190 |
+
"""
|
| 191 |
+
try:
|
| 192 |
+
import torchaudio.sox_effects as ta_sox
|
| 193 |
+
except ImportError:
|
| 194 |
+
raise ImportError("Please install torchaudio: pip install torchaudio")
|
| 195 |
+
|
| 196 |
+
effects = []
|
| 197 |
+
if normalize_volume:
|
| 198 |
+
effects.append(["gain", "-n"])
|
| 199 |
+
if to_sample_rate is not None and to_sample_rate != sample_rate:
|
| 200 |
+
effects.append(["rate", f"{to_sample_rate}"])
|
| 201 |
+
if to_mono and waveform.shape[0] > 1:
|
| 202 |
+
effects.append(["channels", "1"])
|
| 203 |
+
if len(effects) > 0:
|
| 204 |
+
is_np_input = isinstance(waveform, np.ndarray)
|
| 205 |
+
_waveform = torch.from_numpy(waveform) if is_np_input else waveform
|
| 206 |
+
converted, converted_sample_rate = ta_sox.apply_effects_tensor(
|
| 207 |
+
_waveform, sample_rate, effects
|
| 208 |
+
)
|
| 209 |
+
if is_np_input:
|
| 210 |
+
converted = converted.numpy()
|
| 211 |
+
return converted, converted_sample_rate
|
| 212 |
+
return waveform, sample_rate
|
| 213 |
|
| 214 |
class SimulevalTranscoder:
|
| 215 |
+
def __init__(self, sample_rate, debug, buffer_limit):
|
| 216 |
+
self.agent = build_agent()
|
| 217 |
+
self.input_queue = asyncio.Queue()
|
| 218 |
+
self.output_queue = asyncio.Queue()
|
| 219 |
+
self.states = self.agent.build_states()
|
| 220 |
+
if debug:
|
| 221 |
+
self.get_states_root().debug = True
|
| 222 |
+
self.incoming_sample_rate = sample_rate
|
| 223 |
+
self.close = False
|
| 224 |
+
self.g2p = G2p()
|
| 225 |
+
|
| 226 |
+
# buffer all outgoing translations within this amount of time
|
| 227 |
+
self.output_buffer_idle_ms = 5000
|
| 228 |
+
self.output_buffer_size_limit = (
|
| 229 |
+
buffer_limit # phonemes for text, seconds for speech
|
| 230 |
+
)
|
| 231 |
+
self.output_buffer_cur_size = 0
|
| 232 |
+
self.output_buffer: List[List[Segment]] = []
|
| 233 |
+
self.speech_output_sample_rate = None
|
| 234 |
+
|
| 235 |
+
self.last_output_ts = time.time() * 1000
|
| 236 |
+
self.timeout_ms = (
|
| 237 |
+
30000 # close the transcoder thread after this amount of silence
|
| 238 |
+
)
|
| 239 |
+
self.first_input_ts = None
|
| 240 |
+
self.first_output_ts = None
|
| 241 |
+
self.debug = debug
|
| 242 |
+
self.debug_ts = f"{time.time()}_{random.randint(1000, 9999)}"
|
| 243 |
+
if self.debug:
|
| 244 |
+
debug_folder = Path(__file__).resolve().parent.parent / "debug"
|
| 245 |
+
self.test_incoming_wav = soundfile.SoundFile(
|
| 246 |
+
debug_folder / f"{self.debug_ts}_test_incoming.wav",
|
| 247 |
+
mode="w+",
|
| 248 |
+
format="WAV",
|
| 249 |
+
subtype="PCM_16",
|
| 250 |
+
samplerate=self.incoming_sample_rate,
|
| 251 |
+
channels=1,
|
| 252 |
+
)
|
| 253 |
+
self.get_states_root().test_input_segments_wav = soundfile.SoundFile(
|
| 254 |
+
debug_folder / f"{self.debug_ts}_test_input_segments.wav",
|
| 255 |
+
mode="w+",
|
| 256 |
+
format="WAV",
|
| 257 |
+
samplerate=MODEL_SAMPLE_RATE,
|
| 258 |
+
channels=1,
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
def get_states_root(self) -> AgentStates:
|
| 262 |
+
if isinstance(self.agent, TreeAgentPipeline):
|
| 263 |
+
# self.states is a dict
|
| 264 |
+
return self.states[self.agent.source_module]
|
| 265 |
+
else:
|
| 266 |
+
# self.states is a list
|
| 267 |
+
return self.states[0]
|
| 268 |
|
| 269 |
+
def reset_states(self):
|
| 270 |
+
if isinstance(self.agent, TreeAgentPipeline):
|
| 271 |
+
states_iter = self.states.values()
|
| 272 |
+
else:
|
| 273 |
+
states_iter = self.states
|
| 274 |
+
for state in states_iter:
|
| 275 |
+
state.reset()
|
| 276 |
|
| 277 |
+
def debug_log(self, *args):
|
| 278 |
+
if self.debug:
|
| 279 |
+
logger.info(*args)
|
| 280 |
|
| 281 |
+
def process_incoming_bytes(self, incoming_bytes, target_language, sample_rate):
|
| 282 |
+
# TODO: currently just taking sample rate here, refactor sample rate
|
| 283 |
+
# bytes is 16bit signed int
|
| 284 |
+
self.incoming_sample_rate = sample_rate
|
| 285 |
+
segment, sr = self._preprocess_wav(incoming_bytes)
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
segment = SpeechSegment(
|
| 288 |
+
content=segment, sample_rate=sr, tgt_lang=target_language
|
| 289 |
)
|
| 290 |
+
# # segment is array([0, 0, 0, ..., 0, 0, 0], dtype=int16)
|
| 291 |
+
self.input_queue.put_nowait(segment)
|
| 292 |
|
| 293 |
+
def get_input_segment(self):
|
| 294 |
+
if self.input_queue.empty():
|
| 295 |
+
return None
|
| 296 |
+
chunk = self.input_queue.get_nowait()
|
| 297 |
+
self.input_queue.task_done()
|
| 298 |
+
return chunk
|
| 299 |
+
|
| 300 |
+
def _preprocess_wav(self, data: Any) -> Tuple[np.ndarray, int]:
|
| 301 |
+
segment, sample_rate = soundfile.read(
|
| 302 |
+
io.BytesIO(data),
|
| 303 |
+
dtype="float32",
|
| 304 |
+
always_2d=True,
|
| 305 |
+
frames=-1,
|
| 306 |
+
start=0,
|
| 307 |
+
format="RAW",
|
| 308 |
+
subtype="PCM_16",
|
| 309 |
+
samplerate=self.incoming_sample_rate,
|
| 310 |
+
channels=1,
|
| 311 |
+
)
|
| 312 |
+
if self.debug:
|
| 313 |
+
self.test_incoming_wav.seek(0, soundfile.SEEK_END)
|
| 314 |
+
self.test_incoming_wav.write(segment)
|
| 315 |
|
| 316 |
+
segment = segment.T
|
| 317 |
+
segment, new_sample_rate = convert_waveform(
|
| 318 |
+
segment,
|
| 319 |
+
sample_rate,
|
| 320 |
+
normalize_volume=False,
|
| 321 |
+
to_mono=True,
|
| 322 |
+
to_sample_rate=MODEL_SAMPLE_RATE,
|
| 323 |
)
|
| 324 |
|
| 325 |
+
assert MODEL_SAMPLE_RATE == new_sample_rate
|
| 326 |
+
segment = segment.squeeze(axis=0)
|
| 327 |
+
return segment, new_sample_rate
|
| 328 |
+
|
| 329 |
+
def process_pipeline_impl(self, input_segment):
|
| 330 |
+
try:
|
| 331 |
+
with torch.no_grad():
|
| 332 |
+
output_segment = OutputSegments(
|
| 333 |
+
self.agent.pushpop(input_segment, self.states)
|
| 334 |
+
)
|
| 335 |
+
if (
|
| 336 |
+
self.get_states_root().first_input_ts is not None
|
| 337 |
+
and self.first_input_ts is None
|
| 338 |
+
):
|
| 339 |
+
# TODO: this is hacky
|
| 340 |
+
self.first_input_ts = self.get_states_root().first_input_ts
|
| 341 |
+
|
| 342 |
+
if not output_segment.is_empty:
|
| 343 |
+
self.output_queue.put_nowait(output_segment)
|
| 344 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
if output_segment.finished:
|
| 346 |
+
self.debug_log("OUTPUT SEGMENT IS FINISHED. Resetting states.")
|
| 347 |
+
|
| 348 |
+
self.reset_states()
|
| 349 |
+
|
| 350 |
+
if self.debug:
|
| 351 |
+
# when we rebuild states, this value is reset to whatever
|
| 352 |
+
# is in the system dir config, which defaults debug=False.
|
| 353 |
+
self.get_states_root().debug = True
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.error(f"Got exception while processing pipeline: {e}")
|
| 356 |
+
traceback.print_exc()
|
| 357 |
+
return input_segment
|
| 358 |
+
|
| 359 |
+
def process_pipeline_loop(self):
|
| 360 |
+
if self.close:
|
| 361 |
+
return # closes the thread
|
| 362 |
+
|
| 363 |
+
self.debug_log("processing_pipeline")
|
| 364 |
+
while not self.close:
|
| 365 |
+
input_segment = self.get_input_segment()
|
| 366 |
+
if input_segment is None:
|
| 367 |
+
# if self.get_states_root().is_fresh_state: # TODO: this is hacky
|
| 368 |
+
# time.sleep(0.3)
|
| 369 |
+
# else:
|
| 370 |
+
time.sleep(0.03)
|
| 371 |
+
continue
|
| 372 |
+
self.process_pipeline_impl(input_segment)
|
| 373 |
+
self.debug_log("finished processing_pipeline")
|
| 374 |
+
|
| 375 |
+
def process_pipeline_once(self):
|
| 376 |
+
if self.close:
|
| 377 |
+
return
|
| 378 |
+
|
| 379 |
+
self.debug_log("processing pipeline once")
|
| 380 |
+
input_segment = self.get_input_segment()
|
| 381 |
+
if input_segment is None:
|
| 382 |
+
return
|
| 383 |
+
self.process_pipeline_impl(input_segment)
|
| 384 |
+
self.debug_log("finished processing_pipeline_once")
|
| 385 |
+
|
| 386 |
+
def get_output_segment(self):
|
| 387 |
+
if self.output_queue.empty():
|
| 388 |
+
return None
|
| 389 |
+
|
| 390 |
+
output_chunk = self.output_queue.get_nowait()
|
| 391 |
+
self.output_queue.task_done()
|
| 392 |
+
return output_chunk
|
| 393 |
+
|
| 394 |
+
def start(self):
|
| 395 |
+
self.debug_log("starting transcoder in a thread")
|
| 396 |
+
threading.Thread(target=self.process_pipeline_loop).start()
|
| 397 |
+
|
| 398 |
+
def first_translation_time(self):
|
| 399 |
+
return round((self.first_output_ts - self.first_input_ts) / 1000, 2)
|
| 400 |
+
|
| 401 |
+
def get_buffered_output(self) -> SpeechAndTextOutput:
|
| 402 |
+
now = time.time() * 1000
|
| 403 |
+
self.debug_log(f"get_buffered_output queue size: {self.output_queue.qsize()}")
|
| 404 |
+
while not self.output_queue.empty():
|
| 405 |
+
tmp_out = self.get_output_segment()
|
| 406 |
+
if tmp_out and tmp_out.compute_length(self.g2p) > 0:
|
| 407 |
+
if len(self.output_buffer) == 0:
|
| 408 |
+
self.last_output_ts = now
|
| 409 |
+
self._populate_output_buffer(tmp_out)
|
| 410 |
+
self._increment_output_buffer_size(tmp_out)
|
| 411 |
+
|
| 412 |
+
if tmp_out.finished:
|
| 413 |
+
self.debug_log("tmp_out.finished")
|
| 414 |
+
res = self._gather_output_buffer_data(final=True)
|
| 415 |
+
self.debug_log(f"gathered output data: {res}")
|
| 416 |
+
self.output_buffer = []
|
| 417 |
+
self.increment_output_buffer_size = 0
|
| 418 |
+
self.last_output_ts = now
|
| 419 |
+
self.first_output_ts = now
|
| 420 |
+
return res
|
| 421 |
+
else:
|
| 422 |
+
self.debug_log("tmp_out.compute_length is not > 0")
|
| 423 |
+
|
| 424 |
+
if len(self.output_buffer) > 0 and (
|
| 425 |
+
now - self.last_output_ts >= self.output_buffer_idle_ms
|
| 426 |
+
or self.output_buffer_cur_size >= self.output_buffer_size_limit
|
| 427 |
+
):
|
| 428 |
+
self.debug_log(
|
| 429 |
+
"[get_buffered_output] output_buffer is not empty. getting res to return."
|
| 430 |
+
)
|
| 431 |
+
self.last_output_ts = now
|
| 432 |
+
res = self._gather_output_buffer_data(final=False)
|
| 433 |
+
self.debug_log(f"gathered output data: {res}")
|
| 434 |
+
self.output_buffer = []
|
| 435 |
+
self.output_buffer_phoneme_count = 0
|
| 436 |
+
self.first_output_ts = now
|
| 437 |
+
return res
|
| 438 |
+
else:
|
| 439 |
+
self.debug_log("[get_buffered_output] output_buffer is empty...")
|
| 440 |
+
return None
|
| 441 |
+
|
| 442 |
+
def _gather_output_buffer_data(self, final):
|
| 443 |
+
output = SpeechAndTextOutput()
|
| 444 |
+
output.final = final
|
| 445 |
+
output = OutputSegments.join_output_buffer(self.output_buffer, output)
|
| 446 |
+
return output
|
| 447 |
+
|
| 448 |
+
def _increment_output_buffer_size(self, segment: OutputSegments):
|
| 449 |
+
self.output_buffer_cur_size += segment.compute_length(self.g2p)
|
| 450 |
+
|
| 451 |
+
def _populate_output_buffer(self, segment: OutputSegments):
|
| 452 |
+
self.output_buffer.append(segment.segments)
|
| 453 |
|
| 454 |
+
def _compute_phoneme_count(self, string: str) -> int:
|
| 455 |
+
return len([x for x in self.g2p(string) if x != " "])
|