rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from mmengine.utils import deprecated_api_warning
from torch import Tensor
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['nms', 'softnms', 'nms_match', 'nms_rotated', 'nms_quadri'])
# This function is modified from: https://github.com/pytorch/vision/
class NMSop(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, bboxes: Tensor, scores: Tensor, iou_threshold: float,
offset: int, score_threshold: float, max_num: int) -> Tensor:
is_filtering_by_score = score_threshold > 0
if is_filtering_by_score:
valid_mask = scores > score_threshold
bboxes, scores = bboxes[valid_mask], scores[valid_mask]
valid_inds = torch.nonzero(
valid_mask, as_tuple=False).squeeze(dim=1)
inds = ext_module.nms(
bboxes, scores, iou_threshold=float(iou_threshold), offset=offset)
if max_num > 0:
inds = inds[:max_num]
if is_filtering_by_score:
inds = valid_inds[inds]
return inds
class SoftNMSop(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, boxes: Tensor, scores: Tensor, iou_threshold: float,
sigma: float, min_score: float, method: int,
offset: int) -> Tuple[Tensor, Tensor]:
dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
inds = ext_module.softnms(
boxes.cpu(),
scores.cpu(),
dets.cpu(),
iou_threshold=float(iou_threshold),
sigma=float(sigma),
min_score=float(min_score),
method=int(method),
offset=int(offset))
return dets, inds
@staticmethod
def symbolic(g, boxes, scores, iou_threshold, sigma, min_score, method,
offset):
from packaging import version
assert version.parse(torch.__version__) >= version.parse('1.7.0')
nms_out = g.op(
'mmcv::SoftNonMaxSuppression',
boxes,
scores,
iou_threshold_f=float(iou_threshold),
sigma_f=float(sigma),
min_score_f=float(min_score),
method_i=int(method),
offset_i=int(offset),
outputs=2)
return nms_out
array_like_type = Union[Tensor, np.ndarray]
@deprecated_api_warning({'iou_thr': 'iou_threshold'})
def nms(boxes: array_like_type,
scores: array_like_type,
iou_threshold: float,
offset: int = 0,
score_threshold: float = 0,
max_num: int = -1) -> Tuple[array_like_type, array_like_type]:
"""Dispatch to either CPU or GPU NMS implementations.
The input can be either torch tensor or numpy array. GPU NMS will be used
if the input is gpu tensor, otherwise CPU NMS
will be used. The returned type will always be the same as inputs.
Arguments:
boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
scores (torch.Tensor or np.ndarray): scores in shape (N, ).
iou_threshold (float): IoU threshold for NMS.
offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).
score_threshold (float): score threshold for NMS.
max_num (int): maximum number of boxes after NMS.
Returns:
tuple: kept dets (boxes and scores) and indice, which always have
the same data type as the input.
Example:
>>> boxes = np.array([[49.1, 32.4, 51.0, 35.9],
>>> [49.3, 32.9, 51.0, 35.3],
>>> [49.2, 31.8, 51.0, 35.4],
>>> [35.1, 11.5, 39.1, 15.7],
>>> [35.6, 11.8, 39.3, 14.2],
>>> [35.3, 11.5, 39.9, 14.5],
>>> [35.2, 11.7, 39.7, 15.7]], dtype=np.float32)
>>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.5, 0.4, 0.3],\
dtype=np.float32)
>>> iou_threshold = 0.6
>>> dets, inds = nms(boxes, scores, iou_threshold)
>>> assert len(inds) == len(dets) == 3
"""
assert isinstance(boxes, (Tensor, np.ndarray))
assert isinstance(scores, (Tensor, np.ndarray))
is_numpy = False
if isinstance(boxes, np.ndarray):
is_numpy = True
boxes = torch.from_numpy(boxes)
if isinstance(scores, np.ndarray):
scores = torch.from_numpy(scores)
assert boxes.size(1) == 4
assert boxes.size(0) == scores.size(0)
assert offset in (0, 1)
inds = NMSop.apply(boxes, scores, iou_threshold, offset, score_threshold,
max_num)
dets = torch.cat((boxes[inds], scores[inds].reshape(-1, 1)), dim=1)
if is_numpy:
dets = dets.cpu().numpy()
inds = inds.cpu().numpy()
return dets, inds
@deprecated_api_warning({'iou_thr': 'iou_threshold'})
def soft_nms(boxes: array_like_type,
scores: array_like_type,
iou_threshold: float = 0.3,
sigma: float = 0.5,
min_score: float = 1e-3,
method: str = 'linear',
offset: int = 0) -> Tuple[array_like_type, array_like_type]:
"""Dispatch to only CPU Soft NMS implementations.
The input can be either a torch tensor or numpy array.
The returned type will always be the same as inputs.
Args:
boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4).
scores (torch.Tensor or np.ndarray): scores in shape (N, ).
iou_threshold (float): IoU threshold for NMS.
sigma (float): hyperparameter for gaussian method
min_score (float): score filter threshold
method (str): either 'linear' or 'gaussian'
offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset).
Returns:
tuple: kept dets (boxes and scores) and indice, which always have
the same data type as the input.
Example:
>>> boxes = np.array([[4., 3., 5., 3.],
>>> [4., 3., 5., 4.],
>>> [3., 1., 3., 1.],
>>> [3., 1., 3., 1.],
>>> [3., 1., 3., 1.],
>>> [3., 1., 3., 1.]], dtype=np.float32)
>>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32)
>>> iou_threshold = 0.6
>>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5)
>>> assert len(inds) == len(dets) == 5
"""
assert isinstance(boxes, (Tensor, np.ndarray))
assert isinstance(scores, (Tensor, np.ndarray))
is_numpy = False
if isinstance(boxes, np.ndarray):
is_numpy = True
boxes = torch.from_numpy(boxes)
if isinstance(scores, np.ndarray):
scores = torch.from_numpy(scores)
assert boxes.size(1) == 4
assert boxes.size(0) == scores.size(0)
assert offset in (0, 1)
method_dict = {'naive': 0, 'linear': 1, 'gaussian': 2}
assert method in method_dict.keys()
if torch.__version__ == 'parrots':
dets = boxes.new_empty((boxes.size(0), 5), device='cpu')
indata_list = [boxes.cpu(), scores.cpu(), dets.cpu()]
indata_dict = {
'iou_threshold': float(iou_threshold),
'sigma': float(sigma),
'min_score': min_score,
'method': method_dict[method],
'offset': int(offset)
}
inds = ext_module.softnms(*indata_list, **indata_dict)
else:
dets, inds = SoftNMSop.apply(boxes.cpu(), scores.cpu(),
float(iou_threshold), float(sigma),
float(min_score), method_dict[method],
int(offset))
dets = dets[:inds.size(0)]
if is_numpy:
dets = dets.cpu().numpy()
inds = inds.cpu().numpy()
return dets, inds
else:
return dets.to(device=boxes.device), inds.to(device=boxes.device)
def batched_nms(boxes: Tensor,
scores: Tensor,
idxs: Tensor,
nms_cfg: Optional[Dict],
class_agnostic: bool = False) -> Tuple[Tensor, Tensor]:
r"""Performs non-maximum suppression in a batched fashion.
Modified from `torchvision/ops/boxes.py#L39
<https://github.com/pytorch/vision/blob/
505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39>`_.
In order to perform NMS independently per class, we add an offset to all
the boxes. The offset is dependent only on the class idx, and is large
enough so that boxes from different classes do not overlap.
Note:
In v1.4.1 and later, ``batched_nms`` supports skipping the NMS and
returns sorted raw results when `nms_cfg` is None.
Args:
boxes (torch.Tensor): boxes in shape (N, 4) or (N, 5).
scores (torch.Tensor): scores in shape (N, ).
idxs (torch.Tensor): each index value correspond to a bbox cluster,
and NMS will not be applied between elements of different idxs,
shape (N, ).
nms_cfg (dict | optional): Supports skipping the nms when `nms_cfg`
is None, otherwise it should specify nms type and other
parameters like `iou_thr`. Possible keys includes the following.
- iou_threshold (float): IoU threshold used for NMS.
- split_thr (float): threshold number of boxes. In some cases the
number of boxes is large (e.g., 200k). To avoid OOM during
training, the users could set `split_thr` to a small value.
If the number of boxes is greater than the threshold, it will
perform NMS on each group of boxes separately and sequentially.
Defaults to 10000.
class_agnostic (bool): if true, nms is class agnostic,
i.e. IoU thresholding happens over all boxes,
regardless of the predicted class. Defaults to False.
Returns:
tuple: kept dets and indice.
- boxes (Tensor): Bboxes with score after nms, has shape
(num_bboxes, 5). last dimension 5 arrange as
(x1, y1, x2, y2, score)
- keep (Tensor): The indices of remaining boxes in input
boxes.
"""
# skip nms when nms_cfg is None
if nms_cfg is None:
scores, inds = scores.sort(descending=True)
boxes = boxes[inds]
return torch.cat([boxes, scores[:, None]], -1), inds
nms_cfg_ = nms_cfg.copy()
class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic)
if class_agnostic:
boxes_for_nms = boxes
else:
# When using rotated boxes, only apply offsets on center.
if boxes.size(-1) == 5:
# Strictly, the maximum coordinates of the rotating box
# (x,y,w,h,a) should be calculated by polygon coordinates.
# But the conversion from rotated box to polygon will
# slow down the speed.
# So we use max(x,y) + max(w,h) as max coordinate
# which is larger than polygon max coordinate
# max(x1, y1, x2, y2,x3, y3, x4, y4)
max_coordinate = boxes[..., :2].max() + boxes[..., 2:4].max()
offsets = idxs.to(boxes) * (
max_coordinate + torch.tensor(1).to(boxes))
boxes_ctr_for_nms = boxes[..., :2] + offsets[:, None]
boxes_for_nms = torch.cat([boxes_ctr_for_nms, boxes[..., 2:5]],
dim=-1)
else:
max_coordinate = boxes.max()
offsets = idxs.to(boxes) * (
max_coordinate + torch.tensor(1).to(boxes))
boxes_for_nms = boxes + offsets[:, None]
nms_op = nms_cfg_.pop('type', 'nms')
if isinstance(nms_op, str):
nms_op = eval(nms_op)
split_thr = nms_cfg_.pop('split_thr', 10000)
# Won't split to multiple nms nodes when exporting to onnx
if boxes_for_nms.shape[0] < split_thr:
dets, keep = nms_op(boxes_for_nms, scores, **nms_cfg_)
boxes = boxes[keep]
# This assumes `dets` has arbitrary dimensions where
# the last dimension is score.
# Currently it supports bounding boxes [x1, y1, x2, y2, score] or
# rotated boxes [cx, cy, w, h, angle_radian, score].
scores = dets[:, -1]
else:
max_num = nms_cfg_.pop('max_num', -1)
total_mask = scores.new_zeros(scores.size(), dtype=torch.bool)
# Some type of nms would reweight the score, such as SoftNMS
scores_after_nms = scores.new_zeros(scores.size())
for id in torch.unique(idxs):
mask = (idxs == id).nonzero(as_tuple=False).view(-1)
dets, keep = nms_op(boxes_for_nms[mask], scores[mask], **nms_cfg_)
total_mask[mask[keep]] = True
scores_after_nms[mask[keep]] = dets[:, -1]
keep = total_mask.nonzero(as_tuple=False).view(-1)
scores, inds = scores_after_nms[keep].sort(descending=True)
keep = keep[inds]
boxes = boxes[keep]
if max_num > 0:
keep = keep[:max_num]
boxes = boxes[:max_num]
scores = scores[:max_num]
boxes = torch.cat([boxes, scores[:, None]], -1)
return boxes, keep
def nms_match(dets: array_like_type,
iou_threshold: float) -> List[array_like_type]:
"""Matched dets into different groups by NMS.
NMS match is Similar to NMS but when a bbox is suppressed, nms match will
record the indice of suppressed bbox and form a group with the indice of
kept bbox. In each group, indice is sorted as score order.
Args:
dets (torch.Tensor | np.ndarray): Det boxes with scores, shape (N, 5).
iou_threshold (float): IoU thresh for NMS.
Returns:
list[torch.Tensor | np.ndarray]: The outer list corresponds different
matched group, the inner Tensor corresponds the indices for a group
in score order.
"""
if dets.shape[0] == 0:
matched = []
else:
assert dets.shape[-1] == 5, 'inputs dets.shape should be (N, 5), ' \
f'but get {dets.shape}'
if isinstance(dets, Tensor):
dets_t = dets.detach().cpu()
else:
dets_t = torch.from_numpy(dets)
indata_list = [dets_t]
indata_dict = {'iou_threshold': float(iou_threshold)}
matched = ext_module.nms_match(*indata_list, **indata_dict)
if torch.__version__ == 'parrots':
matched = matched.tolist() # type: ignore
if isinstance(dets, Tensor):
return [dets.new_tensor(m, dtype=torch.long) for m in matched]
else:
return [np.array(m, dtype=int) for m in matched]
def nms_rotated(dets: Tensor,
scores: Tensor,
iou_threshold: float,
labels: Optional[Tensor] = None,
clockwise: bool = True) -> Tuple[Tensor, Tensor]:
"""Performs non-maximum suppression (NMS) on the rotated boxes according to
their intersection-over-union (IoU).
Rotated NMS iteratively removes lower scoring rotated boxes which have an
IoU greater than iou_threshold with another (higher scoring) rotated box.
Args:
dets (torch.Tensor): Rotated boxes in shape (N, 5).
They are expected to be in
(x_ctr, y_ctr, width, height, angle_radian) format.
scores (torch.Tensor): scores in shape (N, ).
iou_threshold (float): IoU thresh for NMS.
labels (torch.Tensor, optional): boxes' label in shape (N,).
clockwise (bool): flag indicating whether the positive angular
orientation is clockwise. default True.
`New in version 1.4.3.`
Returns:
tuple: kept dets(boxes and scores) and indice, which is always the
same data type as the input.
"""
if dets.shape[0] == 0:
return dets, None
if not clockwise:
flip_mat = dets.new_ones(dets.shape[-1])
flip_mat[-1] = -1
dets_cw = dets * flip_mat
else:
dets_cw = dets
multi_label = labels is not None
if labels is None:
input_labels = scores.new_empty(0, dtype=torch.int)
else:
input_labels = labels
if dets.device.type in ('npu', 'mlu'):
order = scores.new_empty(0, dtype=torch.long)
if dets.device.type == 'npu':
coefficient = 57.29578 # 180 / PI
for i in range(dets.size()[0]):
dets_cw[i][4] *= coefficient # radians to angle
keep_inds = ext_module.nms_rotated(dets_cw, scores, order, dets_cw,
input_labels, iou_threshold,
multi_label)
dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
dim=1)
return dets, keep_inds
if multi_label:
dets_wl = torch.cat((dets_cw, labels.unsqueeze(1)), 1) # type: ignore
else:
dets_wl = dets_cw
_, order = scores.sort(0, descending=True)
dets_sorted = dets_wl.index_select(0, order)
if torch.__version__ == 'parrots':
keep_inds = ext_module.nms_rotated(
dets_wl,
scores,
order,
dets_sorted,
input_labels,
iou_threshold=iou_threshold,
multi_label=multi_label)
else:
keep_inds = ext_module.nms_rotated(dets_wl, scores, order, dets_sorted,
input_labels, iou_threshold,
multi_label)
dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
dim=1)
return dets, keep_inds
def nms_quadri(dets: Tensor,
scores: Tensor,
iou_threshold: float,
labels: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
"""Performs non-maximum suppression (NMS) on the quadrilateral boxes
according to their intersection-over-union (IoU).
Quadri NMS iteratively removes lower scoring quadrilateral boxes
which have an IoU greater than iou_threshold with another (higher
scoring) quadrilateral box.
Args:
dets (torch.Tensor): Quadri boxes in shape (N, 8).
They are expected to be in
(x1, y1, ..., x4, y4) format.
scores (torch.Tensor): scores in shape (N, ).
iou_threshold (float): IoU thresh for NMS.
labels (torch.Tensor, optional): boxes' label in shape (N,).
Returns:
tuple: kept dets(boxes and scores) and indice, which is always the
same data type as the input.
"""
if dets.shape[0] == 0:
return dets, None
multi_label = labels is not None
if multi_label:
dets_with_lables = \
torch.cat((dets, labels.unsqueeze(1)), 1) # type: ignore
else:
dets_with_lables = dets
_, order = scores.sort(0, descending=True)
dets_sorted = dets_with_lables.index_select(0, order)
keep_inds = ext_module.nms_quadri(dets_with_lables, scores, order,
dets_sorted, iou_threshold, multi_label)
dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)),
dim=1)
return dets, keep_inds