Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Modified from | |
# https://github.com/NVlabs/stylegan3/blob/main/torch_utils/ops/bias_act.py | |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
# source: https://github.com/open-mmlab/mmediting/blob/dev-1.x/mmedit/models/editors/stylegan3/stylegan3_ops/ops/bias_act.py # noqa | |
"""Custom PyTorch ops for efficient bias and activation.""" | |
from typing import Any, Dict, Optional, Union | |
import numpy as np | |
import torch | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', ['bias_act']) | |
class EasyDict(dict): | |
"""Convenience class that behaves like a dict but allows access with the | |
attribute syntax.""" | |
def __getattr__(self, name: str) -> Any: | |
try: | |
return self[name] | |
except KeyError: | |
raise AttributeError(name) | |
def __setattr__(self, name: str, value: Any) -> None: | |
self[name] = value | |
def __delattr__(self, name: str) -> None: | |
del self[name] | |
activation_funcs = { | |
'linear': | |
EasyDict( | |
func=lambda x, **_: x, | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=1, | |
ref='', | |
has_2nd_grad=False), | |
'relu': | |
EasyDict( | |
func=lambda x, **_: torch.nn.functional.relu(x), | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=2, | |
ref='y', | |
has_2nd_grad=False), | |
'lrelu': | |
EasyDict( | |
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), | |
def_alpha=0.2, | |
def_gain=np.sqrt(2), | |
cuda_idx=3, | |
ref='y', | |
has_2nd_grad=False), | |
'tanh': | |
EasyDict( | |
func=lambda x, **_: torch.tanh(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=4, | |
ref='y', | |
has_2nd_grad=True), | |
'sigmoid': | |
EasyDict( | |
func=lambda x, **_: torch.sigmoid(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=5, | |
ref='y', | |
has_2nd_grad=True), | |
'elu': | |
EasyDict( | |
func=lambda x, **_: torch.nn.functional.elu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=6, | |
ref='y', | |
has_2nd_grad=True), | |
'selu': | |
EasyDict( | |
func=lambda x, **_: torch.nn.functional.selu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=7, | |
ref='y', | |
has_2nd_grad=True), | |
'softplus': | |
EasyDict( | |
func=lambda x, **_: torch.nn.functional.softplus(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=8, | |
ref='y', | |
has_2nd_grad=True), | |
'swish': | |
EasyDict( | |
func=lambda x, **_: torch.sigmoid(x) * x, | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=9, | |
ref='x', | |
has_2nd_grad=True), | |
} | |
_null_tensor = torch.empty([0]) | |
def bias_act(input: torch.Tensor, | |
bias: Optional[torch.Tensor] = None, | |
dim: int = 1, | |
act: str = 'linear', | |
alpha: Optional[Union[float, int]] = None, | |
gain: Optional[float] = None, | |
clamp: Optional[float] = None, | |
use_custom_op: bool = True): | |
r"""Fused bias and activation function. | |
Adds `bias` to activation tensor `input`, and evaluates activation | |
function `act`, and scales the result by `gain`. Each of the steps is | |
optional. | |
In most cases, the fused op is considerably more efficient than performing | |
the same calculation using standard PyTorch ops. It supports first and | |
second order gradients, but not third order gradients. | |
Args: | |
input (torch.Tensor): Input activation tensor. Can be of any shape. | |
bias (torch.Tensor): Bias vector, or `None` to disable. | |
Must be a 1D tensor of the same type as `input`. The shape must | |
be known, and it must match the dimension of `input` corresponding | |
to `dim`. Defaults to None. | |
dim (int): The dimension in `input` corresponding to the elements of | |
`bias`. The value of `dim` is ignored if `b` is not specified. | |
Defaults to 1. | |
act (str): Name of the activation function to evaluate, or `"linear"` | |
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid", | |
"swish", etc. See `activation_funcs` for a full list. `None` is not | |
allowed. Defaults to `linear`. | |
alpha (float or int): Shape parameter for the activation | |
function, or `None` to use the default. Defaults to None. | |
gain (float): Scaling factor for the output tensor, or `None` | |
to use default. See `activation_funcs` for the default scaling of | |
each activation function. If unsure, consider specifying 1. | |
Defaults to None. | |
clamp (float): Clamp the output values to `[-clamp, +clamp]`, | |
or `None` to disable the clamping (default). Defaults to None. | |
use_custom_op (bool): Whether to use customized op. | |
Defaults to True. | |
Returns: | |
torch.Tensor: Tensor of the same shape and datatype as `input`. | |
""" | |
assert isinstance(input, torch.Tensor) | |
if use_custom_op and input.is_cuda: | |
return _bias_act_cuda( | |
dim=dim, act=act, alpha=alpha, gain=gain, | |
clamp=clamp).apply(input, bias) | |
return _bias_act_ref( | |
input=input, | |
bias=bias, | |
dim=dim, | |
act=act, | |
alpha=alpha, | |
gain=gain, | |
clamp=clamp) | |
def _bias_act_ref(input: torch.Tensor, | |
bias: Optional[torch.Tensor] = None, | |
dim: int = 1, | |
act: str = 'linear', | |
alpha: Optional[Union[float, int]] = None, | |
gain: Optional[float] = None, | |
clamp: Optional[float] = None): | |
"""Slow reference implementation of `bias_act()` using standard PyTorch | |
ops. | |
Adds `bias` to activation tensor `input`, and evaluates activation | |
function `act`, and scales the result by `gain`. Each of the steps is | |
optional. | |
In most cases, the fused op is considerably more efficient than performing | |
the same calculation using standard PyTorch ops. It supports first and | |
second order gradients, but not third order gradients. | |
Args: | |
input (torch.Tensor): Input activation tensor. Can be of any shape. | |
bias (torch.Tensor): Bias vector, or `None` to disable. | |
Must be a 1D tensor of the same type as `input`. The shape must | |
be known, and it must match the dimension of `input` corresponding | |
to `dim`. Defaults to None. | |
dim (int): The dimension in `input` corresponding to the elements of | |
`bias`. The value of `dim` is ignored if `b` is not specified. | |
Defaults to 1. | |
act (str): Name of the activation function to evaluate, or `"linear"` | |
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid", | |
"swish", etc. See `activation_funcs` for a full list. `None` is not | |
allowed. Defaults to `linear`. | |
alpha (float or int): Shape parameter for the activation | |
function, or `None` to use the default. Defaults to None. | |
gain (float): Scaling factor for the output tensor, or `None` | |
to use default. See `activation_funcs` for the default scaling of | |
each activation function. If unsure, consider specifying 1. | |
Defaults to None. | |
clamp (float): Clamp the output values to | |
`[-clamp, +clamp]`, or `None` to disable the clamping (default). | |
Defaults to None. | |
Returns: | |
torch.Tensor: Tensor of the same shape and datatype as `input`. | |
""" | |
assert isinstance(input, torch.Tensor) | |
assert clamp is None or clamp >= 0 | |
spec = activation_funcs[act] | |
alpha = float(alpha if alpha is not None else spec.def_alpha) | |
gain = float(gain if gain is not None else spec.def_gain) | |
clamp = float(clamp if clamp is not None else -1) | |
# Add bias. | |
if bias is not None: | |
assert isinstance(bias, torch.Tensor) and bias.ndim == 1 | |
assert 0 <= dim < input.ndim | |
assert bias.shape[0] == input.shape[dim] | |
input = input + bias.reshape( | |
[-1 if i == dim else 1 for i in range(input.ndim)]) | |
# Evaluate activation function. | |
alpha = float(alpha) | |
output = spec.func(input, alpha=alpha) | |
# Scale by gain. | |
gain = float(gain) | |
if gain != 1: | |
output = output * gain | |
# Clamp. | |
if clamp >= 0: | |
# pylint: disable=invalid-unary-operand-type | |
output = output.clamp(-clamp, clamp) | |
return output | |
_bias_act_cuda_cache: Dict = dict() | |
def _bias_act_cuda(dim: int = 1, | |
act: str = 'linear', | |
alpha: Optional[Union[float, int]] = None, | |
gain: Optional[float] = None, | |
clamp: Optional[float] = None): | |
""""Fast CUDA implementation of `bias_act()` using custom ops. | |
Args: | |
dim (int): The dimension in `x` corresponding to the elements of `b`. | |
The value of `dim` is ignored if `b` is not specified. | |
Defaults to 1. | |
act (str): Name of the activation function to evaluate, or `"linear"` | |
to disable. Can be e.g. "relu", "lrelu", "tanh", "sigmoid", | |
"swish", etc. See `activation_funcs` for a full list. `None` is not | |
allowed. Defaults to `linear`. | |
alpha (float | int): Shape parameter for the activation | |
function, or `None` to use the default. Defaults to None. | |
gain (float): Scaling factor for the output tensor, or `None` | |
to use default. See `activation_funcs` for the default scaling of | |
each activation function. If unsure, consider specifying 1. | |
Defaults to None. | |
clamp (float): Clamp the output values to `[-clamp, +clamp]`, | |
or `None` to disable the clamping (default). Defaults to None. | |
Returns: | |
torch.Tensor: Tensor of the same shape and datatype as `x`. | |
""" | |
# Parse arguments. | |
assert clamp is None or clamp >= 0 | |
spec = activation_funcs[act] | |
alpha = float(alpha if alpha is not None else spec.def_alpha) | |
gain = float(gain if gain is not None else spec.def_gain) | |
clamp = float(clamp if clamp is not None else -1) | |
# Lookup from cache. | |
key = (dim, act, alpha, gain, clamp) | |
if key in _bias_act_cuda_cache: | |
return _bias_act_cuda_cache[key] | |
# Forward op. | |
class BiasActCuda(torch.autograd.Function): | |
def forward(ctx, x, b): # pylint: disable=arguments-differ | |
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride( | |
1) == 1 else torch.contiguous_format | |
x = x.contiguous(memory_format=ctx.memory_format) | |
b = b.contiguous() if b is not None else _null_tensor.to(x.device) | |
y = x | |
if act != 'linear' or gain != 1 or clamp >= 0 or ( | |
b is not _null_tensor.to(x.device)): | |
y = ext_module.bias_act(x, b, _null_tensor.to(x.device), | |
_null_tensor.to(x.device), | |
_null_tensor.to(x.device), 0, dim, | |
spec.cuda_idx, alpha, gain, clamp) | |
ctx.save_for_backward( | |
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor.to( | |
x.device), b if 'x' in spec.ref or spec.has_2nd_grad else | |
_null_tensor.to(x.device), | |
y if 'y' in spec.ref else _null_tensor.to(x.device)) | |
return y | |
def backward(ctx, dy): # pylint: disable=arguments-differ | |
dy = dy.contiguous(memory_format=ctx.memory_format) | |
x, b, y = ctx.saved_tensors | |
dx = None | |
db = None | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
dx = dy | |
if act != 'linear' or gain != 1 or clamp >= 0: | |
dx = BiasActCudaGrad.apply(dy, x, b, y) | |
if ctx.needs_input_grad[1]: | |
db = dx.sum([i for i in range(dx.ndim) if i != dim]) | |
return dx, db | |
# Backward op. | |
class BiasActCudaGrad(torch.autograd.Function): | |
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ | |
ctx.memory_format = torch.channels_last if dy.ndim > 2 and ( | |
dy.stride(1) == 1) else torch.contiguous_format | |
dx = ext_module.bias_act(dy, b, x, y, _null_tensor.to(x.device), 1, | |
dim, spec.cuda_idx, alpha, gain, clamp) | |
ctx.save_for_backward( | |
dy if spec.has_2nd_grad else _null_tensor.to(x.device), x, b, | |
y) | |
return dx | |
def backward(ctx, d_dx): # pylint: disable=arguments-differ | |
d_dx = d_dx.contiguous(memory_format=ctx.memory_format) | |
dy, x, b, y = ctx.saved_tensors | |
d_dy = None | |
d_x = None | |
d_b = None | |
d_y = None | |
if ctx.needs_input_grad[0]: | |
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y) | |
if spec.has_2nd_grad and (ctx.needs_input_grad[1] | |
or ctx.needs_input_grad[2]): | |
d_x = ext_module.bias_act(d_dx, b, x, y, dy, 2, dim, | |
spec.cuda_idx, alpha, gain, clamp) | |
if spec.has_2nd_grad and ctx.needs_input_grad[2]: | |
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim]) | |
return d_dy, d_x, d_b, d_y | |
# Add to cache. | |
_bias_act_cuda_cache[key] = BiasActCuda | |
return BiasActCuda | |