Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Tuple, Union | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['bezier_align_forward', 'bezier_align_backward']) | |
class BezierAlignFunction(Function): | |
def forward(ctx, | |
input: torch.Tensor, | |
beziers: torch.Tensor, | |
output_size: Union[int, Tuple[int, int]], | |
spatial_scale: Union[int, float] = 1.0, | |
sampling_ratio: int = 0, | |
aligned: bool = True) -> torch.Tensor: | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = spatial_scale | |
ctx.input_shape = input.size() | |
ctx.sampling_ratio = sampling_ratio | |
ctx.aligned = aligned | |
assert beziers.size(1) == 17 | |
output_shape = (beziers.size(0), input.size(1), ctx.output_size[0], | |
ctx.output_size[1]) | |
output = input.new_zeros(output_shape) | |
ext_module.bezier_align_forward( | |
input, | |
beziers, | |
output, | |
aligned_height=ctx.output_size[0], | |
aligned_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
aligned=ctx.aligned) | |
ctx.save_for_backward(beziers) | |
return output | |
def backward(ctx, grad_output: torch.Tensor): | |
beziers = ctx.saved_tensors[0] | |
grad_input = grad_output.new_zeros(ctx.input_shape) | |
grad_output = grad_output.contiguous() | |
ext_module.bezier_align_backward( | |
grad_output, | |
beziers, | |
grad_input, | |
aligned_height=ctx.output_size[0], | |
aligned_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
aligned=ctx.aligned) | |
return grad_input, None, None, None, None, None | |
bezier_align = BezierAlignFunction.apply | |
class BezierAlign(nn.Module): | |
"""Bezier align pooling layer. | |
Args: | |
output_size (tuple): h, w | |
spatial_scale (float): scale the input boxes by this number | |
sampling_ratio (int): number of inputs samples to take for each | |
output sample. 0 to take samples densely for current models. | |
aligned (bool): if False, use the legacy implementation in | |
MMDetection. If True, align the results more perfectly. | |
Note: | |
The implementation of BezierAlign is modified from | |
https://github.com/aim-uofa/AdelaiDet | |
The meaning of aligned=True: | |
Given a continuous coordinate c, its two neighboring pixel | |
indices (in our pixel model) are computed by floor(c - 0.5) and | |
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete | |
indices [0] and [1] (which are sampled from the underlying signal | |
at continuous coordinates 0.5 and 1.5). But the original roi_align | |
(aligned=False) does not subtract the 0.5 when computing | |
neighboring pixel indices and therefore it uses pixels with a | |
slightly incorrect alignment (relative to our pixel model) when | |
performing bilinear interpolation. | |
With `aligned=True`, | |
we first appropriately scale the ROI and then shift it by -0.5 | |
prior to calling roi_align. This produces the correct neighbors; | |
The difference does not make a difference to the model's | |
performance if ROIAlign is used together with conv layers. | |
""" | |
def __init__( | |
self, | |
output_size: Tuple, | |
spatial_scale: Union[int, float], | |
sampling_ratio: int, | |
aligned: bool = True, | |
) -> None: | |
super().__init__() | |
self.output_size = _pair(output_size) | |
self.spatial_scale = float(spatial_scale) | |
self.sampling_ratio = int(sampling_ratio) | |
self.aligned = aligned | |
def forward(self, input: torch.Tensor, | |
beziers: torch.Tensor) -> torch.Tensor: | |
"""BezierAlign forward. | |
Args: | |
inputs (Tensor): input features. | |
beziers (Tensor): beziers for align. | |
""" | |
return bezier_align(input, beziers, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.aligned) | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(output_size={self.output_size}, ' | |
s += f'spatial_scale={self.spatial_scale})' | |
s += f'sampling_ratio={self.sampling_ratio})' | |
s += f'aligned={self.aligned})' | |
return s | |