sapiens-pose / external /cv /mmcv /ops /bezier_align.py
rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple, Union
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['bezier_align_forward', 'bezier_align_backward'])
class BezierAlignFunction(Function):
@staticmethod
def forward(ctx,
input: torch.Tensor,
beziers: torch.Tensor,
output_size: Union[int, Tuple[int, int]],
spatial_scale: Union[int, float] = 1.0,
sampling_ratio: int = 0,
aligned: bool = True) -> torch.Tensor:
ctx.output_size = _pair(output_size)
ctx.spatial_scale = spatial_scale
ctx.input_shape = input.size()
ctx.sampling_ratio = sampling_ratio
ctx.aligned = aligned
assert beziers.size(1) == 17
output_shape = (beziers.size(0), input.size(1), ctx.output_size[0],
ctx.output_size[1])
output = input.new_zeros(output_shape)
ext_module.bezier_align_forward(
input,
beziers,
output,
aligned_height=ctx.output_size[0],
aligned_width=ctx.output_size[1],
spatial_scale=ctx.spatial_scale,
sampling_ratio=ctx.sampling_ratio,
aligned=ctx.aligned)
ctx.save_for_backward(beziers)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output: torch.Tensor):
beziers = ctx.saved_tensors[0]
grad_input = grad_output.new_zeros(ctx.input_shape)
grad_output = grad_output.contiguous()
ext_module.bezier_align_backward(
grad_output,
beziers,
grad_input,
aligned_height=ctx.output_size[0],
aligned_width=ctx.output_size[1],
spatial_scale=ctx.spatial_scale,
sampling_ratio=ctx.sampling_ratio,
aligned=ctx.aligned)
return grad_input, None, None, None, None, None
bezier_align = BezierAlignFunction.apply
class BezierAlign(nn.Module):
"""Bezier align pooling layer.
Args:
output_size (tuple): h, w
spatial_scale (float): scale the input boxes by this number
sampling_ratio (int): number of inputs samples to take for each
output sample. 0 to take samples densely for current models.
aligned (bool): if False, use the legacy implementation in
MMDetection. If True, align the results more perfectly.
Note:
The implementation of BezierAlign is modified from
https://github.com/aim-uofa/AdelaiDet
The meaning of aligned=True:
Given a continuous coordinate c, its two neighboring pixel
indices (in our pixel model) are computed by floor(c - 0.5) and
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
indices [0] and [1] (which are sampled from the underlying signal
at continuous coordinates 0.5 and 1.5). But the original roi_align
(aligned=False) does not subtract the 0.5 when computing
neighboring pixel indices and therefore it uses pixels with a
slightly incorrect alignment (relative to our pixel model) when
performing bilinear interpolation.
With `aligned=True`,
we first appropriately scale the ROI and then shift it by -0.5
prior to calling roi_align. This produces the correct neighbors;
The difference does not make a difference to the model's
performance if ROIAlign is used together with conv layers.
"""
def __init__(
self,
output_size: Tuple,
spatial_scale: Union[int, float],
sampling_ratio: int,
aligned: bool = True,
) -> None:
super().__init__()
self.output_size = _pair(output_size)
self.spatial_scale = float(spatial_scale)
self.sampling_ratio = int(sampling_ratio)
self.aligned = aligned
def forward(self, input: torch.Tensor,
beziers: torch.Tensor) -> torch.Tensor:
"""BezierAlign forward.
Args:
inputs (Tensor): input features.
beziers (Tensor): beziers for align.
"""
return bezier_align(input, beziers, self.output_size,
self.spatial_scale, self.sampling_ratio,
self.aligned)
def __repr__(self):
s = self.__class__.__name__
s += f'(output_size={self.output_size}, '
s += f'spatial_scale={self.spatial_scale})'
s += f'sampling_ratio={self.sampling_ratio})'
s += f'aligned={self.aligned})'
return s