File size: 2,216 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional

import numpy as np

import mmcv

try:
    import torch
except ImportError:
    torch = None


def tensor2imgs(tensor,
                mean: Optional[tuple] = None,
                std: Optional[tuple] = None,
                to_rgb: bool = True) -> list:
    """Convert tensor to 3-channel images or 1-channel gray images.

    Args:
        tensor (torch.Tensor): Tensor that contains multiple images, shape (
            N, C, H, W). :math:`C` can be either 3 or 1.
        mean (tuple[float], optional): Mean of images. If None,
            (0, 0, 0) will be used for tensor with 3-channel,
            while (0, ) for tensor with 1-channel. Defaults to None.
        std (tuple[float], optional): Standard deviation of images. If None,
            (1, 1, 1) will be used for tensor with 3-channel,
            while (1, ) for tensor with 1-channel. Defaults to None.
        to_rgb (bool, optional): Whether the tensor was converted to RGB
            format in the first place. If so, convert it back to BGR.
            For the tensor with 1 channel, it must be False. Defaults to True.

    Returns:
        list[np.ndarray]: A list that contains multiple images.
    """

    if torch is None:
        raise RuntimeError('pytorch is not installed')
    assert torch.is_tensor(tensor) and tensor.ndim == 4
    channels = tensor.size(1)
    assert channels in [1, 3]
    if mean is None:
        mean = (0, ) * channels
    if std is None:
        std = (1, ) * channels
    assert (channels == len(mean) == len(std) == 3) or \
        (channels == len(mean) == len(std) == 1 and not to_rgb)

    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs