Spaces:
Running
Running
from wrappers import LSTMWrapper, XGBWrapper, CNNWrapper | |
import joblib | |
from tensorflow.keras.models import load_model | |
def load_model_by_type(model_path): | |
if model_path.suffix == '.h5': | |
if 'lstm_multi' in str(model_path): | |
return LSTMWrapper(load_model(model_path)) | |
elif 'cnn_multi' in str(model_path): | |
return CNNWrapper(load_model(model_path)) | |
else: | |
raise ValueError("Unsupported model type") | |
elif model_path.suffix == '.pkl': | |
return XGBWrapper(joblib.load(model_path)) | |
else: | |
raise ValueError("Unsupported model type") | |
def encoder_from_model(model_name): | |
if model_name == "cnn_multi_model.h5": | |
return "cnn_multi_label_encoding.pkl" | |
elif model_name == "lstm_multi_model.h5": | |
return "lstm_multi_label_encoding.pkl" | |
elif model_name == "pca_xgboost_multi_model.pkl": | |
return "pca_xgboost_multi_label_encoding.pkl" | |
elif model_name == "cnn_binary_model.h5": | |
return "cnn_binary_label_encoding.pkl" | |
elif model_name == "lstm_binary_model.h5": | |
return "lstm_binary_label_encoding.pkl" | |
elif model_name == "pca_xgboost_binary_model.pkl": | |
return "pca_xgboost_binary_label_encoding.pkl" | |
else: | |
raise ValueError("Unsupported model name") | |
if __name__ == "__main__": | |
from pathlib import Path | |
PACKAGE_ROOT = Path(__file__).parent.parent.parent | |
MODEL_PATH = PACKAGE_ROOT / "models" / "lstm_multi_model.h5" | |
load_model_by_type(MODEL_PATH) |