from abc import abstractmethod from functools import partial import numpy as np import torch from ...modules.diffusionmodules.util import make_beta_schedule from ...util import append_zero def generate_roughly_equally_spaced_steps(num_substeps: int, max_step: int) -> np.ndarray: return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1] class Discretization: def __call__(self, n, do_append_zero=True, device="cpu", flip=False, return_idx=False): if return_idx: sigmas, idx = self.get_sigmas(n, device=device, return_idx=return_idx) else: sigmas = self.get_sigmas(n, device=device, return_idx=return_idx) sigmas = append_zero(sigmas) if do_append_zero else sigmas if return_idx: return sigmas if not flip else torch.flip(sigmas, (0,)), idx else: return sigmas if not flip else torch.flip(sigmas, (0,)) @abstractmethod def get_sigmas(self, n, device): pass class EDMDiscretization(Discretization): def __init__(self, sigma_min=0.002, sigma_max=80.0, rho=7.0): self.sigma_min = sigma_min self.sigma_max = sigma_max self.rho = rho def get_sigmas(self, n, device="cpu"): ramp = torch.linspace(0, 1, n, device=device) min_inv_rho = self.sigma_min ** (1 / self.rho) max_inv_rho = self.sigma_max ** (1 / self.rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** self.rho return sigmas class LegacyDDPMDiscretization(Discretization): def __init__( self, linear_start=0.00085, linear_end=0.0120, num_timesteps=1000, ): super().__init__() self.num_timesteps = num_timesteps betas = make_beta_schedule("linear", num_timesteps, linear_start=linear_start, linear_end=linear_end) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.to_torch = partial(torch.tensor, dtype=torch.float32) def get_sigmas(self, n, device="cpu"): if n < self.num_timesteps: timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps) alphas_cumprod = self.alphas_cumprod[timesteps] elif n == self.num_timesteps: alphas_cumprod = self.alphas_cumprod else: raise ValueError to_torch = partial(torch.tensor, dtype=torch.float32, device=device) sigmas = to_torch((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 return torch.flip(sigmas, (0,)) # sigma_t: 14.4 -> 0.029 class ZeroSNRDDPMDiscretization(Discretization): def __init__( self, linear_start=0.00085, linear_end=0.0120, num_timesteps=1000, shift_scale=1.0, # noise schedule t_n -> t_m: logSNR(t_m) = logSNR(t_n) - log(shift_scale) keep_start=False, post_shift=False, ): super().__init__() if keep_start and not post_shift: linear_start = linear_start / (shift_scale + (1 - shift_scale) * linear_start) self.num_timesteps = num_timesteps betas = make_beta_schedule("linear", num_timesteps, linear_start=linear_start, linear_end=linear_end) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.to_torch = partial(torch.tensor, dtype=torch.float32) # SNR shift if not post_shift: self.alphas_cumprod = self.alphas_cumprod / (shift_scale + (1 - shift_scale) * self.alphas_cumprod) self.post_shift = post_shift self.shift_scale = shift_scale def get_sigmas(self, n, device="cpu", return_idx=False): if n < self.num_timesteps: timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps) alphas_cumprod = self.alphas_cumprod[timesteps] elif n == self.num_timesteps: alphas_cumprod = self.alphas_cumprod else: raise ValueError to_torch = partial(torch.tensor, dtype=torch.float32, device=device) alphas_cumprod = to_torch(alphas_cumprod) alphas_cumprod_sqrt = alphas_cumprod.sqrt() alphas_cumprod_sqrt_0 = alphas_cumprod_sqrt[0].clone() alphas_cumprod_sqrt_T = alphas_cumprod_sqrt[-1].clone() alphas_cumprod_sqrt -= alphas_cumprod_sqrt_T alphas_cumprod_sqrt *= alphas_cumprod_sqrt_0 / (alphas_cumprod_sqrt_0 - alphas_cumprod_sqrt_T) if self.post_shift: alphas_cumprod_sqrt = ( alphas_cumprod_sqrt**2 / (self.shift_scale + (1 - self.shift_scale) * alphas_cumprod_sqrt**2) ) ** 0.5 if return_idx: return torch.flip(alphas_cumprod_sqrt, (0,)), timesteps else: return torch.flip(alphas_cumprod_sqrt, (0,)) # sqrt(alpha_t): 0 -> 0.99