Spaces:
Runtime error
Runtime error
import torch | |
import torch.distributed | |
from sat import mpu | |
from ...util import default, instantiate_from_config | |
class EDMSampling: | |
def __init__(self, p_mean=-1.2, p_std=1.2): | |
self.p_mean = p_mean | |
self.p_std = p_std | |
def __call__(self, n_samples, rand=None): | |
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,))) | |
return log_sigma.exp() | |
class DiscreteSampling: | |
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, uniform_sampling=False): | |
self.num_idx = num_idx | |
self.sigmas = instantiate_from_config(discretization_config)(num_idx, do_append_zero=do_append_zero, flip=flip) | |
world_size = mpu.get_data_parallel_world_size() | |
self.uniform_sampling = uniform_sampling | |
if self.uniform_sampling: | |
i = 1 | |
while True: | |
if world_size % i != 0 or num_idx % (world_size // i) != 0: | |
i += 1 | |
else: | |
self.group_num = world_size // i | |
break | |
assert self.group_num > 0 | |
assert world_size % self.group_num == 0 | |
self.group_width = world_size // self.group_num # the number of rank in one group | |
self.sigma_interval = self.num_idx // self.group_num | |
def idx_to_sigma(self, idx): | |
return self.sigmas[idx] | |
def __call__(self, n_samples, rand=None, return_idx=False): | |
if self.uniform_sampling: | |
rank = mpu.get_data_parallel_rank() | |
group_index = rank // self.group_width | |
idx = default( | |
rand, | |
torch.randint( | |
group_index * self.sigma_interval, (group_index + 1) * self.sigma_interval, (n_samples,) | |
), | |
) | |
else: | |
idx = default( | |
rand, | |
torch.randint(0, self.num_idx, (n_samples,)), | |
) | |
if return_idx: | |
return self.idx_to_sigma(idx), idx | |
else: | |
return self.idx_to_sigma(idx) | |
class PartialDiscreteSampling: | |
def __init__(self, discretization_config, total_num_idx, partial_num_idx, do_append_zero=False, flip=True): | |
self.total_num_idx = total_num_idx | |
self.partial_num_idx = partial_num_idx | |
self.sigmas = instantiate_from_config(discretization_config)( | |
total_num_idx, do_append_zero=do_append_zero, flip=flip | |
) | |
def idx_to_sigma(self, idx): | |
return self.sigmas[idx] | |
def __call__(self, n_samples, rand=None): | |
idx = default( | |
rand, | |
# torch.randint(self.total_num_idx-self.partial_num_idx, self.total_num_idx, (n_samples,)), | |
torch.randint(0, self.partial_num_idx, (n_samples,)), | |
) | |
return self.idx_to_sigma(idx) | |