eysho's picture
Upload folder using huggingface_hub
e276be2 verified
import torch
import torch.distributed
from sat import mpu
from ...util import default, instantiate_from_config
class EDMSampling:
def __init__(self, p_mean=-1.2, p_std=1.2):
self.p_mean = p_mean
self.p_std = p_std
def __call__(self, n_samples, rand=None):
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,)))
return log_sigma.exp()
class DiscreteSampling:
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, uniform_sampling=False):
self.num_idx = num_idx
self.sigmas = instantiate_from_config(discretization_config)(num_idx, do_append_zero=do_append_zero, flip=flip)
world_size = mpu.get_data_parallel_world_size()
self.uniform_sampling = uniform_sampling
if self.uniform_sampling:
i = 1
while True:
if world_size % i != 0 or num_idx % (world_size // i) != 0:
i += 1
else:
self.group_num = world_size // i
break
assert self.group_num > 0
assert world_size % self.group_num == 0
self.group_width = world_size // self.group_num # the number of rank in one group
self.sigma_interval = self.num_idx // self.group_num
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def __call__(self, n_samples, rand=None, return_idx=False):
if self.uniform_sampling:
rank = mpu.get_data_parallel_rank()
group_index = rank // self.group_width
idx = default(
rand,
torch.randint(
group_index * self.sigma_interval, (group_index + 1) * self.sigma_interval, (n_samples,)
),
)
else:
idx = default(
rand,
torch.randint(0, self.num_idx, (n_samples,)),
)
if return_idx:
return self.idx_to_sigma(idx), idx
else:
return self.idx_to_sigma(idx)
class PartialDiscreteSampling:
def __init__(self, discretization_config, total_num_idx, partial_num_idx, do_append_zero=False, flip=True):
self.total_num_idx = total_num_idx
self.partial_num_idx = partial_num_idx
self.sigmas = instantiate_from_config(discretization_config)(
total_num_idx, do_append_zero=do_append_zero, flip=flip
)
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def __call__(self, n_samples, rand=None):
idx = default(
rand,
# torch.randint(self.total_num_idx-self.partial_num_idx, self.total_num_idx, (n_samples,)),
torch.randint(0, self.partial_num_idx, (n_samples,)),
)
return self.idx_to_sigma(idx)