eysho's picture
Upload folder using huggingface_hub
e276be2 verified
"""
Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
"""
from typing import Dict, Union
import torch
from omegaconf import ListConfig, OmegaConf
from tqdm import tqdm
from ...modules.diffusionmodules.sampling_utils import (
get_ancestral_step,
linear_multistep_coeff,
to_d,
to_neg_log_sigma,
to_sigma,
)
from ...util import append_dims, default, instantiate_from_config
from ...util import SeededNoise
from .guiders import DynamicCFG
DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"}
class BaseDiffusionSampler:
def __init__(
self,
discretization_config: Union[Dict, ListConfig, OmegaConf],
num_steps: Union[int, None] = None,
guider_config: Union[Dict, ListConfig, OmegaConf, None] = None,
verbose: bool = False,
device: str = "cuda",
):
self.num_steps = num_steps
self.discretization = instantiate_from_config(discretization_config)
self.guider = instantiate_from_config(
default(
guider_config,
DEFAULT_GUIDER,
)
)
self.verbose = verbose
self.device = device
def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
sigmas = self.discretization(self.num_steps if num_steps is None else num_steps, device=self.device)
uc = default(uc, cond)
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
num_sigmas = len(sigmas)
s_in = x.new_ones([x.shape[0]]).float()
return x, s_in, sigmas, num_sigmas, cond, uc
def denoise(self, x, denoiser, sigma, cond, uc):
denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc))
denoised = self.guider(denoised, sigma)
return denoised
def get_sigma_gen(self, num_sigmas):
sigma_generator = range(num_sigmas - 1)
if self.verbose:
print("#" * 30, " Sampling setting ", "#" * 30)
print(f"Sampler: {self.__class__.__name__}")
print(f"Discretization: {self.discretization.__class__.__name__}")
print(f"Guider: {self.guider.__class__.__name__}")
sigma_generator = tqdm(
sigma_generator,
total=num_sigmas,
desc=f"Sampling with {self.__class__.__name__} for {num_sigmas} steps",
)
return sigma_generator
class SingleStepDiffusionSampler(BaseDiffusionSampler):
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs):
raise NotImplementedError
def euler_step(self, x, d, dt):
return x + dt * d
class EDMSampler(SingleStepDiffusionSampler):
def __init__(self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs):
super().__init__(*args, **kwargs)
self.s_churn = s_churn
self.s_tmin = s_tmin
self.s_tmax = s_tmax
self.s_noise = s_noise
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
sigma_hat = sigma * (gamma + 1.0)
if gamma > 0:
eps = torch.randn_like(x) * self.s_noise
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
d = to_d(x, sigma_hat, denoised)
dt = append_dims(next_sigma - sigma_hat, x.ndim)
euler_step = self.euler_step(x, d, dt)
x = self.possible_correction_step(euler_step, x, d, dt, next_sigma, denoiser, cond, uc)
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
for i in self.get_sigma_gen(num_sigmas):
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0
)
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
gamma,
)
return x
class DDIMSampler(SingleStepDiffusionSampler):
def __init__(self, s_noise=0.1, *args, **kwargs):
super().__init__(*args, **kwargs)
self.s_noise = s_noise
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, s_noise=0.0):
denoised = self.denoise(x, denoiser, sigma, cond, uc)
d = to_d(x, sigma, denoised)
dt = append_dims(next_sigma * (1 - s_noise**2) ** 0.5 - sigma, x.ndim)
euler_step = x + dt * d + s_noise * append_dims(next_sigma, x.ndim) * torch.randn_like(x)
x = self.possible_correction_step(euler_step, x, d, dt, next_sigma, denoiser, cond, uc)
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
for i in self.get_sigma_gen(num_sigmas):
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
self.s_noise,
)
return x
class AncestralSampler(SingleStepDiffusionSampler):
def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs):
super().__init__(*args, **kwargs)
self.eta = eta
self.s_noise = s_noise
self.noise_sampler = lambda x: torch.randn_like(x)
def ancestral_euler_step(self, x, denoised, sigma, sigma_down):
d = to_d(x, sigma, denoised)
dt = append_dims(sigma_down - sigma, x.ndim)
return self.euler_step(x, d, dt)
def ancestral_step(self, x, sigma, next_sigma, sigma_up):
x = torch.where(
append_dims(next_sigma, x.ndim) > 0.0,
x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim),
x,
)
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
for i in self.get_sigma_gen(num_sigmas):
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
)
return x
class LinearMultistepSampler(BaseDiffusionSampler):
def __init__(
self,
order=4,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.order = order
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
ds = []
sigmas_cpu = sigmas.detach().cpu().numpy()
for i in self.get_sigma_gen(num_sigmas):
sigma = s_in * sigmas[i]
denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs)
denoised = self.guider(denoised, sigma)
d = to_d(x, sigma, denoised)
ds.append(d)
if len(ds) > self.order:
ds.pop(0)
cur_order = min(i + 1, self.order)
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
return x
class EulerEDMSampler(EDMSampler):
def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
return euler_step
class HeunEDMSampler(EDMSampler):
def possible_correction_step(self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc):
if torch.sum(next_sigma) < 1e-14:
# Save a network evaluation if all noise levels are 0
return euler_step
else:
denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc)
d_new = to_d(euler_step, next_sigma, denoised)
d_prime = (d + d_new) / 2.0
# apply correction if noise level is not 0
x = torch.where(append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step)
return x
class EulerAncestralSampler(AncestralSampler):
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc):
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
denoised = self.denoise(x, denoiser, sigma, cond, uc)
x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
return x
class DPMPP2SAncestralSampler(AncestralSampler):
def get_variables(self, sigma, sigma_down):
t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)]
h = t_next - t
s = t + 0.5 * h
return h, s, t, t_next
def get_mult(self, h, s, t, t_next):
mult1 = to_sigma(s) / to_sigma(t)
mult2 = (-0.5 * h).expm1()
mult3 = to_sigma(t_next) / to_sigma(t)
mult4 = (-h).expm1()
return mult1, mult2, mult3, mult4
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs):
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
denoised = self.denoise(x, denoiser, sigma, cond, uc)
x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
if torch.sum(sigma_down) < 1e-14:
# Save a network evaluation if all noise levels are 0
x = x_euler
else:
h, s, t, t_next = self.get_variables(sigma, sigma_down)
mult = [append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next)]
x2 = mult[0] * x - mult[1] * denoised
denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc)
x_dpmpp2s = mult[2] * x - mult[3] * denoised2
# apply correction if noise level is not 0
x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler)
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
return x
class DPMPP2MSampler(BaseDiffusionSampler):
def get_variables(self, sigma, next_sigma, previous_sigma=None):
t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
h = t_next - t
if previous_sigma is not None:
h_last = t - to_neg_log_sigma(previous_sigma)
r = h_last / h
return h, r, t, t_next
else:
return h, None, t, t_next
def get_mult(self, h, r, t, t_next, previous_sigma):
mult1 = to_sigma(t_next) / to_sigma(t)
mult2 = (-h).expm1()
if previous_sigma is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def sampler_step(
self,
old_denoised,
previous_sigma,
sigma,
next_sigma,
denoiser,
x,
cond,
uc=None,
):
denoised = self.denoise(x, denoiser, sigma, cond, uc)
h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
mult = [append_dims(mult, x.ndim) for mult in self.get_mult(h, r, t, t_next, previous_sigma)]
x_standard = mult[0] * x - mult[1] * denoised
if old_denoised is None or torch.sum(next_sigma) < 1e-14:
# Save a network evaluation if all noise levels are 0 or on the first step
return x_standard, denoised
else:
denoised_d = mult[2] * denoised - mult[3] * old_denoised
x_advanced = mult[0] * x - mult[1] * denoised_d
# apply correction if noise level is not 0 and not first step
x = torch.where(append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard)
return x, denoised
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
old_denoised = None
for i in self.get_sigma_gen(num_sigmas):
x, old_denoised = self.sampler_step(
old_denoised,
None if i == 0 else s_in * sigmas[i - 1],
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc=uc,
)
return x
class SDEDPMPP2MSampler(BaseDiffusionSampler):
def get_variables(self, sigma, next_sigma, previous_sigma=None):
t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
h = t_next - t
if previous_sigma is not None:
h_last = t - to_neg_log_sigma(previous_sigma)
r = h_last / h
return h, r, t, t_next
else:
return h, None, t, t_next
def get_mult(self, h, r, t, t_next, previous_sigma):
mult1 = to_sigma(t_next) / to_sigma(t) * (-h).exp()
mult2 = (-2 * h).expm1()
if previous_sigma is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def sampler_step(
self,
old_denoised,
previous_sigma,
sigma,
next_sigma,
denoiser,
x,
cond,
uc=None,
):
denoised = self.denoise(x, denoiser, sigma, cond, uc)
h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
mult = [append_dims(mult, x.ndim) for mult in self.get_mult(h, r, t, t_next, previous_sigma)]
mult_noise = append_dims(next_sigma * (1 - (-2 * h).exp()) ** 0.5, x.ndim)
x_standard = mult[0] * x - mult[1] * denoised + mult_noise * torch.randn_like(x)
if old_denoised is None or torch.sum(next_sigma) < 1e-14:
# Save a network evaluation if all noise levels are 0 or on the first step
return x_standard, denoised
else:
denoised_d = mult[2] * denoised - mult[3] * old_denoised
x_advanced = mult[0] * x - mult[1] * denoised_d + mult_noise * torch.randn_like(x)
# apply correction if noise level is not 0 and not first step
x = torch.where(append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard)
return x, denoised
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, scale=None, **kwargs):
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(x, cond, uc, num_steps)
old_denoised = None
for i in self.get_sigma_gen(num_sigmas):
x, old_denoised = self.sampler_step(
old_denoised,
None if i == 0 else s_in * sigmas[i - 1],
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc=uc,
)
return x
class SdeditEDMSampler(EulerEDMSampler):
def __init__(self, edit_ratio=0.5, *args, **kwargs):
super().__init__(*args, **kwargs)
self.edit_ratio = edit_ratio
def __call__(self, denoiser, image, randn, cond, uc=None, num_steps=None, edit_ratio=None):
randn_unit = randn.clone()
randn, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(randn, cond, uc, num_steps)
if num_steps is None:
num_steps = self.num_steps
if edit_ratio is None:
edit_ratio = self.edit_ratio
x = None
for i in self.get_sigma_gen(num_sigmas):
if i / num_steps < edit_ratio:
continue
if x is None:
x = image + randn_unit * append_dims(s_in * sigmas[i], len(randn_unit.shape))
gamma = (
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0
)
x = self.sampler_step(
s_in * sigmas[i],
s_in * sigmas[i + 1],
denoiser,
x,
cond,
uc,
gamma,
)
return x
class VideoDDIMSampler(BaseDiffusionSampler):
def __init__(self, fixed_frames=0, sdedit=False, **kwargs):
super().__init__(**kwargs)
self.fixed_frames = fixed_frames
self.sdedit = sdedit
def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
alpha_cumprod_sqrt, timesteps = self.discretization(
self.num_steps if num_steps is None else num_steps,
device=self.device,
return_idx=True,
do_append_zero=False,
)
alpha_cumprod_sqrt = torch.cat([alpha_cumprod_sqrt, alpha_cumprod_sqrt.new_ones([1])])
timesteps = torch.cat([torch.tensor(list(timesteps)).new_zeros([1]) - 1, torch.tensor(list(timesteps))])
uc = default(uc, cond)
num_sigmas = len(alpha_cumprod_sqrt)
s_in = x.new_ones([x.shape[0]])
return x, s_in, alpha_cumprod_sqrt, num_sigmas, cond, uc, timesteps
def denoise(self, x, denoiser, alpha_cumprod_sqrt, cond, uc, timestep=None, idx=None, scale=None, scale_emb=None):
additional_model_inputs = {}
if isinstance(scale, torch.Tensor) == False and scale == 1:
additional_model_inputs["idx"] = x.new_ones([x.shape[0]]) * timestep
if scale_emb is not None:
additional_model_inputs["scale_emb"] = scale_emb
denoised = denoiser(x, alpha_cumprod_sqrt, cond, **additional_model_inputs).to(torch.float32)
else:
additional_model_inputs["idx"] = torch.cat([x.new_ones([x.shape[0]]) * timestep] * 2)
denoised = denoiser(
*self.guider.prepare_inputs(x, alpha_cumprod_sqrt, cond, uc), **additional_model_inputs
).to(torch.float32)
if isinstance(self.guider, DynamicCFG):
denoised = self.guider(
denoised, (1 - alpha_cumprod_sqrt**2) ** 0.5, step_index=self.num_steps - timestep, scale=scale
)
else:
denoised = self.guider(denoised, (1 - alpha_cumprod_sqrt**2) ** 0.5, scale=scale)
return denoised
def sampler_step(
self,
alpha_cumprod_sqrt,
next_alpha_cumprod_sqrt,
denoiser,
x,
cond,
uc=None,
idx=None,
timestep=None,
scale=None,
scale_emb=None,
):
denoised = self.denoise(
x, denoiser, alpha_cumprod_sqrt, cond, uc, timestep, idx, scale=scale, scale_emb=scale_emb
).to(torch.float32)
a_t = ((1 - next_alpha_cumprod_sqrt**2) / (1 - alpha_cumprod_sqrt**2)) ** 0.5
b_t = next_alpha_cumprod_sqrt - alpha_cumprod_sqrt * a_t
x = append_dims(a_t, x.ndim) * x + append_dims(b_t, x.ndim) * denoised
return x
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, scale=None, scale_emb=None):
x, s_in, alpha_cumprod_sqrt, num_sigmas, cond, uc, timesteps = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
for i in self.get_sigma_gen(num_sigmas):
x = self.sampler_step(
s_in * alpha_cumprod_sqrt[i],
s_in * alpha_cumprod_sqrt[i + 1],
denoiser,
x,
cond,
uc,
idx=self.num_steps - i,
timestep=timesteps[-(i + 1)],
scale=scale,
scale_emb=scale_emb,
)
return x
class VPSDEDPMPP2MSampler(VideoDDIMSampler):
def get_variables(self, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt=None):
alpha_cumprod = alpha_cumprod_sqrt**2
lamb = ((alpha_cumprod / (1 - alpha_cumprod)) ** 0.5).log()
next_alpha_cumprod = next_alpha_cumprod_sqrt**2
lamb_next = ((next_alpha_cumprod / (1 - next_alpha_cumprod)) ** 0.5).log()
h = lamb_next - lamb
if previous_alpha_cumprod_sqrt is not None:
previous_alpha_cumprod = previous_alpha_cumprod_sqrt**2
lamb_previous = ((previous_alpha_cumprod / (1 - previous_alpha_cumprod)) ** 0.5).log()
h_last = lamb - lamb_previous
r = h_last / h
return h, r, lamb, lamb_next
else:
return h, None, lamb, lamb_next
def get_mult(self, h, r, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt):
mult1 = ((1 - next_alpha_cumprod_sqrt**2) / (1 - alpha_cumprod_sqrt**2)) ** 0.5 * (-h).exp()
mult2 = (-2 * h).expm1() * next_alpha_cumprod_sqrt
if previous_alpha_cumprod_sqrt is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def sampler_step(
self,
old_denoised,
previous_alpha_cumprod_sqrt,
alpha_cumprod_sqrt,
next_alpha_cumprod_sqrt,
denoiser,
x,
cond,
uc=None,
idx=None,
timestep=None,
scale=None,
scale_emb=None,
):
denoised = self.denoise(
x, denoiser, alpha_cumprod_sqrt, cond, uc, timestep, idx, scale=scale, scale_emb=scale_emb
).to(torch.float32)
if idx == 1:
return denoised, denoised
h, r, lamb, lamb_next = self.get_variables(
alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt
)
mult = [
append_dims(mult, x.ndim)
for mult in self.get_mult(h, r, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt)
]
mult_noise = append_dims((1 - next_alpha_cumprod_sqrt**2) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5, x.ndim)
x_standard = mult[0] * x - mult[1] * denoised + mult_noise * torch.randn_like(x)
if old_denoised is None or torch.sum(next_alpha_cumprod_sqrt) < 1e-14:
# Save a network evaluation if all noise levels are 0 or on the first step
return x_standard, denoised
else:
denoised_d = mult[2] * denoised - mult[3] * old_denoised
x_advanced = mult[0] * x - mult[1] * denoised_d + mult_noise * torch.randn_like(x)
x = x_advanced
return x, denoised
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, scale=None, scale_emb=None):
x, s_in, alpha_cumprod_sqrt, num_sigmas, cond, uc, timesteps = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
if self.fixed_frames > 0:
prefix_frames = x[:, : self.fixed_frames]
old_denoised = None
for i in self.get_sigma_gen(num_sigmas):
if self.fixed_frames > 0:
if self.sdedit:
rd = torch.randn_like(prefix_frames)
noised_prefix_frames = alpha_cumprod_sqrt[i] * prefix_frames + rd * append_dims(
s_in * (1 - alpha_cumprod_sqrt[i] ** 2) ** 0.5, len(prefix_frames.shape)
)
x = torch.cat([noised_prefix_frames, x[:, self.fixed_frames :]], dim=1)
else:
x = torch.cat([prefix_frames, x[:, self.fixed_frames :]], dim=1)
x, old_denoised = self.sampler_step(
old_denoised,
None if i == 0 else s_in * alpha_cumprod_sqrt[i - 1],
s_in * alpha_cumprod_sqrt[i],
s_in * alpha_cumprod_sqrt[i + 1],
denoiser,
x,
cond,
uc=uc,
idx=self.num_steps - i,
timestep=timesteps[-(i + 1)],
scale=scale,
scale_emb=scale_emb,
)
if self.fixed_frames > 0:
x = torch.cat([prefix_frames, x[:, self.fixed_frames :]], dim=1)
return x
class VPODEDPMPP2MSampler(VideoDDIMSampler):
def get_variables(self, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt=None):
alpha_cumprod = alpha_cumprod_sqrt**2
lamb = ((alpha_cumprod / (1 - alpha_cumprod)) ** 0.5).log()
next_alpha_cumprod = next_alpha_cumprod_sqrt**2
lamb_next = ((next_alpha_cumprod / (1 - next_alpha_cumprod)) ** 0.5).log()
h = lamb_next - lamb
if previous_alpha_cumprod_sqrt is not None:
previous_alpha_cumprod = previous_alpha_cumprod_sqrt**2
lamb_previous = ((previous_alpha_cumprod / (1 - previous_alpha_cumprod)) ** 0.5).log()
h_last = lamb - lamb_previous
r = h_last / h
return h, r, lamb, lamb_next
else:
return h, None, lamb, lamb_next
def get_mult(self, h, r, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt):
mult1 = ((1 - next_alpha_cumprod_sqrt**2) / (1 - alpha_cumprod_sqrt**2)) ** 0.5
mult2 = (-h).expm1() * next_alpha_cumprod_sqrt
if previous_alpha_cumprod_sqrt is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def sampler_step(
self,
old_denoised,
previous_alpha_cumprod_sqrt,
alpha_cumprod_sqrt,
next_alpha_cumprod_sqrt,
denoiser,
x,
cond,
uc=None,
idx=None,
timestep=None,
):
denoised = self.denoise(x, denoiser, alpha_cumprod_sqrt, cond, uc, timestep, idx).to(torch.float32)
if idx == 1:
return denoised, denoised
h, r, lamb, lamb_next = self.get_variables(
alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt
)
mult = [
append_dims(mult, x.ndim)
for mult in self.get_mult(h, r, alpha_cumprod_sqrt, next_alpha_cumprod_sqrt, previous_alpha_cumprod_sqrt)
]
x_standard = mult[0] * x - mult[1] * denoised
if old_denoised is None or torch.sum(next_alpha_cumprod_sqrt) < 1e-14:
# Save a network evaluation if all noise levels are 0 or on the first step
return x_standard, denoised
else:
denoised_d = mult[2] * denoised - mult[3] * old_denoised
x_advanced = mult[0] * x - mult[1] * denoised_d
x = x_advanced
return x, denoised
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, scale=None, **kwargs):
x, s_in, alpha_cumprod_sqrt, num_sigmas, cond, uc, timesteps = self.prepare_sampling_loop(
x, cond, uc, num_steps
)
old_denoised = None
for i in self.get_sigma_gen(num_sigmas):
x, old_denoised = self.sampler_step(
old_denoised,
None if i == 0 else s_in * alpha_cumprod_sqrt[i - 1],
s_in * alpha_cumprod_sqrt[i],
s_in * alpha_cumprod_sqrt[i + 1],
denoiser,
x,
cond,
uc=uc,
idx=self.num_steps - i,
timestep=timesteps[-(i + 1)],
)
return x