Spaces:
Runtime error
Runtime error
from typing import List, Optional, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from omegaconf import ListConfig | |
import math | |
from ...modules.diffusionmodules.sampling import VideoDDIMSampler, VPSDEDPMPP2MSampler | |
from ...util import append_dims, instantiate_from_config | |
from ...modules.autoencoding.lpips.loss.lpips import LPIPS | |
# import rearrange | |
from einops import rearrange | |
import random | |
from sat import mpu | |
class StandardDiffusionLoss(nn.Module): | |
def __init__( | |
self, | |
sigma_sampler_config, | |
type="l2", | |
offset_noise_level=0.0, | |
batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None, | |
): | |
super().__init__() | |
assert type in ["l2", "l1", "lpips"] | |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config) | |
self.type = type | |
self.offset_noise_level = offset_noise_level | |
if type == "lpips": | |
self.lpips = LPIPS().eval() | |
if not batch2model_keys: | |
batch2model_keys = [] | |
if isinstance(batch2model_keys, str): | |
batch2model_keys = [batch2model_keys] | |
self.batch2model_keys = set(batch2model_keys) | |
def __call__(self, network, denoiser, conditioner, input, batch): | |
cond = conditioner(batch) | |
additional_model_inputs = {key: batch[key] for key in self.batch2model_keys.intersection(batch)} | |
sigmas = self.sigma_sampler(input.shape[0]).to(input.device) | |
noise = torch.randn_like(input) | |
if self.offset_noise_level > 0.0: | |
noise = ( | |
noise + append_dims(torch.randn(input.shape[0]).to(input.device), input.ndim) * self.offset_noise_level | |
) | |
noise = noise.to(input.dtype) | |
noised_input = input.float() + noise * append_dims(sigmas, input.ndim) | |
model_output = denoiser(network, noised_input, sigmas, cond, **additional_model_inputs) | |
w = append_dims(denoiser.w(sigmas), input.ndim) | |
return self.get_loss(model_output, input, w) | |
def get_loss(self, model_output, target, w): | |
if self.type == "l2": | |
return torch.mean((w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1) | |
elif self.type == "l1": | |
return torch.mean((w * (model_output - target).abs()).reshape(target.shape[0], -1), 1) | |
elif self.type == "lpips": | |
loss = self.lpips(model_output, target).reshape(-1) | |
return loss | |
class VideoDiffusionLoss(StandardDiffusionLoss): | |
def __init__(self, block_scale=None, block_size=None, min_snr_value=None, fixed_frames=0, **kwargs): | |
self.fixed_frames = fixed_frames | |
self.block_scale = block_scale | |
self.block_size = block_size | |
self.min_snr_value = min_snr_value | |
super().__init__(**kwargs) | |
def __call__(self, network, denoiser, conditioner, input, batch): | |
cond = conditioner(batch) | |
additional_model_inputs = {key: batch[key] for key in self.batch2model_keys.intersection(batch)} | |
alphas_cumprod_sqrt, idx = self.sigma_sampler(input.shape[0], return_idx=True) | |
alphas_cumprod_sqrt = alphas_cumprod_sqrt.to(input.device) | |
idx = idx.to(input.device) | |
noise = torch.randn_like(input) | |
# broadcast noise | |
mp_size = mpu.get_model_parallel_world_size() | |
global_rank = torch.distributed.get_rank() // mp_size | |
src = global_rank * mp_size | |
torch.distributed.broadcast(idx, src=src, group=mpu.get_model_parallel_group()) | |
torch.distributed.broadcast(noise, src=src, group=mpu.get_model_parallel_group()) | |
torch.distributed.broadcast(alphas_cumprod_sqrt, src=src, group=mpu.get_model_parallel_group()) | |
additional_model_inputs["idx"] = idx | |
if self.offset_noise_level > 0.0: | |
noise = ( | |
noise + append_dims(torch.randn(input.shape[0]).to(input.device), input.ndim) * self.offset_noise_level | |
) | |
noised_input = input.float() * append_dims(alphas_cumprod_sqrt, input.ndim) + noise * append_dims( | |
(1 - alphas_cumprod_sqrt**2) ** 0.5, input.ndim | |
) | |
model_output = denoiser(network, noised_input, alphas_cumprod_sqrt, cond, **additional_model_inputs) | |
w = append_dims(1 / (1 - alphas_cumprod_sqrt**2), input.ndim) # v-pred | |
if self.min_snr_value is not None: | |
w = min(w, self.min_snr_value) | |
return self.get_loss(model_output, input, w) | |
def get_loss(self, model_output, target, w): | |
if self.type == "l2": | |
return torch.mean((w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1) | |
elif self.type == "l1": | |
return torch.mean((w * (model_output - target).abs()).reshape(target.shape[0], -1), 1) | |
elif self.type == "lpips": | |
loss = self.lpips(model_output, target).reshape(-1) | |
return loss | |
def get_3d_position_ids(frame_len, h, w): | |
i = torch.arange(frame_len).view(frame_len, 1, 1).expand(frame_len, h, w) | |
j = torch.arange(h).view(1, h, 1).expand(frame_len, h, w) | |
k = torch.arange(w).view(1, 1, w).expand(frame_len, h, w) | |
position_ids = torch.stack([i, j, k], dim=-1).reshape(-1, 3) | |
return position_ids | |