Spaces:
Runtime error
Runtime error
import logging | |
from abc import ABC, abstractmethod | |
from typing import Dict, List, Optional, Tuple, Union | |
from functools import partial | |
import math | |
import torch | |
from einops import rearrange, repeat | |
from ...util import append_dims, default, instantiate_from_config | |
class Guider(ABC): | |
def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor: | |
pass | |
def prepare_inputs(self, x: torch.Tensor, s: float, c: Dict, uc: Dict) -> Tuple[torch.Tensor, float, Dict]: | |
pass | |
class VanillaCFG: | |
""" | |
implements parallelized CFG | |
""" | |
def __init__(self, scale, dyn_thresh_config=None): | |
self.scale = scale | |
scale_schedule = lambda scale, sigma: scale # independent of step | |
self.scale_schedule = partial(scale_schedule, scale) | |
self.dyn_thresh = instantiate_from_config( | |
default( | |
dyn_thresh_config, | |
{"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"}, | |
) | |
) | |
def __call__(self, x, sigma, scale=None): | |
x_u, x_c = x.chunk(2) | |
scale_value = default(scale, self.scale_schedule(sigma)) | |
x_pred = self.dyn_thresh(x_u, x_c, scale_value) | |
return x_pred | |
def prepare_inputs(self, x, s, c, uc): | |
c_out = dict() | |
for k in c: | |
if k in ["vector", "crossattn", "concat"]: | |
c_out[k] = torch.cat((uc[k], c[k]), 0) | |
else: | |
assert c[k] == uc[k] | |
c_out[k] = c[k] | |
return torch.cat([x] * 2), torch.cat([s] * 2), c_out | |
class DynamicCFG(VanillaCFG): | |
def __init__(self, scale, exp, num_steps, dyn_thresh_config=None): | |
super().__init__(scale, dyn_thresh_config) | |
scale_schedule = ( | |
lambda scale, sigma, step_index: 1 + scale * (1 - math.cos(math.pi * (step_index / num_steps) ** exp)) / 2 | |
) | |
self.scale_schedule = partial(scale_schedule, scale) | |
self.dyn_thresh = instantiate_from_config( | |
default( | |
dyn_thresh_config, | |
{"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"}, | |
) | |
) | |
def __call__(self, x, sigma, step_index, scale=None): | |
x_u, x_c = x.chunk(2) | |
scale_value = self.scale_schedule(sigma, step_index.item()) | |
x_pred = self.dyn_thresh(x_u, x_c, scale_value) | |
return x_pred | |
class IdentityGuider: | |
def __call__(self, x, sigma): | |
return x | |
def prepare_inputs(self, x, s, c, uc): | |
c_out = dict() | |
for k in c: | |
c_out[k] = c[k] | |
return x, s, c_out | |