File size: 8,852 Bytes
e276be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import argparse
from functools import partial
from PIL import Image
import numpy as np
import torch.distributed
import torchvision
from omegaconf import OmegaConf
import imageio

import torch

from sat import mpu
from sat.training.deepspeed_training import training_main

from sgm.util import get_obj_from_str, isheatmap, exists

from diffusion_video import SATVideoDiffusionEngine
from arguments import get_args, process_config_to_args

from einops import rearrange, repeat

try:
    import wandb
except ImportError:
    print("warning: wandb not installed")


def print_debug(args, s):
    if args.debug:
        s = f"RANK:[{torch.distributed.get_rank()}]:" + s
        print(s)


def save_texts(texts, save_dir, iterations):
    output_path = os.path.join(save_dir, f"{str(iterations).zfill(8)}")
    with open(output_path, "w", encoding="utf-8") as f:
        for text in texts:
            f.write(text + "\n")


def save_video_as_grid_and_mp4(video_batch: torch.Tensor, save_path: str, T: int, fps: int = 5, args=None, key=None):
    os.makedirs(save_path, exist_ok=True)

    for i, vid in enumerate(video_batch):
        gif_frames = []
        for frame in vid:
            frame = rearrange(frame, "c h w -> h w c")
            frame = (255.0 * frame).cpu().numpy().astype(np.uint8)
            gif_frames.append(frame)
        now_save_path = os.path.join(save_path, f"{i:06d}.mp4")
        with imageio.get_writer(now_save_path, fps=fps) as writer:
            for frame in gif_frames:
                writer.append_data(frame)
        if args is not None and args.wandb:
            wandb.log(
                {key + f"_video_{i}": wandb.Video(now_save_path, fps=fps, format="mp4")}, step=args.iteration + 1
            )


def log_video(batch, model, args, only_log_video_latents=False):
    texts = batch["txt"]
    text_save_dir = os.path.join(args.save, "video_texts")
    os.makedirs(text_save_dir, exist_ok=True)
    save_texts(texts, text_save_dir, args.iteration)

    gpu_autocast_kwargs = {
        "enabled": torch.is_autocast_enabled(),
        "dtype": torch.get_autocast_gpu_dtype(),
        "cache_enabled": torch.is_autocast_cache_enabled(),
    }
    with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
        videos = model.log_video(batch, only_log_video_latents=only_log_video_latents)

    if torch.distributed.get_rank() == 0:
        root = os.path.join(args.save, "video")

        if only_log_video_latents:
            root = os.path.join(root, "latents")
            filename = "{}_gs-{:06}".format("latents", args.iteration)
            path = os.path.join(root, filename)
            os.makedirs(os.path.split(path)[0], exist_ok=True)
            os.makedirs(path, exist_ok=True)
            torch.save(videos["latents"], os.path.join(path, "latent.pt"))
        else:
            for k in videos:
                N = videos[k].shape[0]
                if not isheatmap(videos[k]):
                    videos[k] = videos[k][:N]
                if isinstance(videos[k], torch.Tensor):
                    videos[k] = videos[k].detach().float().cpu()
                    if not isheatmap(videos[k]):
                        videos[k] = torch.clamp(videos[k], -1.0, 1.0)

            num_frames = batch["num_frames"][0]
            fps = batch["fps"][0].cpu().item()
            if only_log_video_latents:
                root = os.path.join(root, "latents")
                filename = "{}_gs-{:06}".format("latents", args.iteration)
                path = os.path.join(root, filename)
                os.makedirs(os.path.split(path)[0], exist_ok=True)
                os.makedirs(path, exist_ok=True)
                torch.save(videos["latents"], os.path.join(path, "latents.pt"))
            else:
                for k in videos:
                    samples = (videos[k] + 1.0) / 2.0
                    filename = "{}_gs-{:06}".format(k, args.iteration)

                    path = os.path.join(root, filename)
                    os.makedirs(os.path.split(path)[0], exist_ok=True)
                    save_video_as_grid_and_mp4(samples, path, num_frames // fps, fps, args, k)


def broad_cast_batch(batch):
    mp_size = mpu.get_model_parallel_world_size()
    global_rank = torch.distributed.get_rank() // mp_size
    src = global_rank * mp_size

    if batch["mp4"] is not None:
        broadcast_shape = [batch["mp4"].shape, batch["fps"].shape, batch["num_frames"].shape]
    else:
        broadcast_shape = None

    txt = [batch["txt"], broadcast_shape]
    torch.distributed.broadcast_object_list(txt, src=src, group=mpu.get_model_parallel_group())
    batch["txt"] = txt[0]

    mp4_shape = txt[1][0]
    fps_shape = txt[1][1]
    num_frames_shape = txt[1][2]

    if mpu.get_model_parallel_rank() != 0:
        batch["mp4"] = torch.zeros(mp4_shape, device="cuda")
        batch["fps"] = torch.zeros(fps_shape, device="cuda", dtype=torch.long)
        batch["num_frames"] = torch.zeros(num_frames_shape, device="cuda", dtype=torch.long)

    torch.distributed.broadcast(batch["mp4"], src=src, group=mpu.get_model_parallel_group())
    torch.distributed.broadcast(batch["fps"], src=src, group=mpu.get_model_parallel_group())
    torch.distributed.broadcast(batch["num_frames"], src=src, group=mpu.get_model_parallel_group())
    return batch


def forward_step_eval(data_iterator, model, args, timers, only_log_video_latents=False, data_class=None):
    if mpu.get_model_parallel_rank() == 0:
        timers("data loader").start()
        batch_video = next(data_iterator)
        timers("data loader").stop()

        if len(batch_video["mp4"].shape) == 6:
            b, v = batch_video["mp4"].shape[:2]
            batch_video["mp4"] = batch_video["mp4"].view(-1, *batch_video["mp4"].shape[2:])
            txt = []
            for i in range(b):
                for j in range(v):
                    txt.append(batch_video["txt"][j][i])
            batch_video["txt"] = txt

        for key in batch_video:
            if isinstance(batch_video[key], torch.Tensor):
                batch_video[key] = batch_video[key].cuda()
    else:
        batch_video = {"mp4": None, "fps": None, "num_frames": None, "txt": None}
    broad_cast_batch(batch_video)
    if mpu.get_data_parallel_rank() == 0:
        log_video(batch_video, model, args, only_log_video_latents=only_log_video_latents)

    batch_video["global_step"] = args.iteration
    loss, loss_dict = model.shared_step(batch_video)
    for k in loss_dict:
        if loss_dict[k].dtype == torch.bfloat16:
            loss_dict[k] = loss_dict[k].to(torch.float32)
    return loss, loss_dict


def forward_step(data_iterator, model, args, timers, data_class=None):
    if mpu.get_model_parallel_rank() == 0:
        timers("data loader").start()
        batch = next(data_iterator)
        timers("data loader").stop()
        for key in batch:
            if isinstance(batch[key], torch.Tensor):
                batch[key] = batch[key].cuda()

        if torch.distributed.get_rank() == 0:
            if not os.path.exists(os.path.join(args.save, "training_config.yaml")):
                configs = [OmegaConf.load(cfg) for cfg in args.base]
                config = OmegaConf.merge(*configs)
                os.makedirs(args.save, exist_ok=True)
                OmegaConf.save(config=config, f=os.path.join(args.save, "training_config.yaml"))
    else:
        batch = {"mp4": None, "fps": None, "num_frames": None, "txt": None}

    batch["global_step"] = args.iteration

    broad_cast_batch(batch)

    loss, loss_dict = model.shared_step(batch)

    return loss, loss_dict


if __name__ == "__main__":
    if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ:
        os.environ["LOCAL_RANK"] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]
        os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
        os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]

    py_parser = argparse.ArgumentParser(add_help=False)
    known, args_list = py_parser.parse_known_args()
    args = get_args(args_list)
    args = argparse.Namespace(**vars(args), **vars(known))

    data_class = get_obj_from_str(args.data_config["target"])
    create_dataset_function = partial(data_class.create_dataset_function, **args.data_config["params"])

    import yaml

    configs = []
    for config in args.base:
        with open(config, "r") as f:
            base_config = yaml.safe_load(f)
        configs.append(base_config)
    args.log_config = configs

    training_main(
        args,
        model_cls=SATVideoDiffusionEngine,
        forward_step_function=partial(forward_step, data_class=data_class),
        forward_step_eval=partial(
            forward_step_eval, data_class=data_class, only_log_video_latents=args.only_log_video_latents
        ),
        create_dataset_function=create_dataset_function,
    )