Spaces:
Runtime error
Runtime error
File size: 8,852 Bytes
e276be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import argparse
from functools import partial
from PIL import Image
import numpy as np
import torch.distributed
import torchvision
from omegaconf import OmegaConf
import imageio
import torch
from sat import mpu
from sat.training.deepspeed_training import training_main
from sgm.util import get_obj_from_str, isheatmap, exists
from diffusion_video import SATVideoDiffusionEngine
from arguments import get_args, process_config_to_args
from einops import rearrange, repeat
try:
import wandb
except ImportError:
print("warning: wandb not installed")
def print_debug(args, s):
if args.debug:
s = f"RANK:[{torch.distributed.get_rank()}]:" + s
print(s)
def save_texts(texts, save_dir, iterations):
output_path = os.path.join(save_dir, f"{str(iterations).zfill(8)}")
with open(output_path, "w", encoding="utf-8") as f:
for text in texts:
f.write(text + "\n")
def save_video_as_grid_and_mp4(video_batch: torch.Tensor, save_path: str, T: int, fps: int = 5, args=None, key=None):
os.makedirs(save_path, exist_ok=True)
for i, vid in enumerate(video_batch):
gif_frames = []
for frame in vid:
frame = rearrange(frame, "c h w -> h w c")
frame = (255.0 * frame).cpu().numpy().astype(np.uint8)
gif_frames.append(frame)
now_save_path = os.path.join(save_path, f"{i:06d}.mp4")
with imageio.get_writer(now_save_path, fps=fps) as writer:
for frame in gif_frames:
writer.append_data(frame)
if args is not None and args.wandb:
wandb.log(
{key + f"_video_{i}": wandb.Video(now_save_path, fps=fps, format="mp4")}, step=args.iteration + 1
)
def log_video(batch, model, args, only_log_video_latents=False):
texts = batch["txt"]
text_save_dir = os.path.join(args.save, "video_texts")
os.makedirs(text_save_dir, exist_ok=True)
save_texts(texts, text_save_dir, args.iteration)
gpu_autocast_kwargs = {
"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled(),
}
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
videos = model.log_video(batch, only_log_video_latents=only_log_video_latents)
if torch.distributed.get_rank() == 0:
root = os.path.join(args.save, "video")
if only_log_video_latents:
root = os.path.join(root, "latents")
filename = "{}_gs-{:06}".format("latents", args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
os.makedirs(path, exist_ok=True)
torch.save(videos["latents"], os.path.join(path, "latent.pt"))
else:
for k in videos:
N = videos[k].shape[0]
if not isheatmap(videos[k]):
videos[k] = videos[k][:N]
if isinstance(videos[k], torch.Tensor):
videos[k] = videos[k].detach().float().cpu()
if not isheatmap(videos[k]):
videos[k] = torch.clamp(videos[k], -1.0, 1.0)
num_frames = batch["num_frames"][0]
fps = batch["fps"][0].cpu().item()
if only_log_video_latents:
root = os.path.join(root, "latents")
filename = "{}_gs-{:06}".format("latents", args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
os.makedirs(path, exist_ok=True)
torch.save(videos["latents"], os.path.join(path, "latents.pt"))
else:
for k in videos:
samples = (videos[k] + 1.0) / 2.0
filename = "{}_gs-{:06}".format(k, args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
save_video_as_grid_and_mp4(samples, path, num_frames // fps, fps, args, k)
def broad_cast_batch(batch):
mp_size = mpu.get_model_parallel_world_size()
global_rank = torch.distributed.get_rank() // mp_size
src = global_rank * mp_size
if batch["mp4"] is not None:
broadcast_shape = [batch["mp4"].shape, batch["fps"].shape, batch["num_frames"].shape]
else:
broadcast_shape = None
txt = [batch["txt"], broadcast_shape]
torch.distributed.broadcast_object_list(txt, src=src, group=mpu.get_model_parallel_group())
batch["txt"] = txt[0]
mp4_shape = txt[1][0]
fps_shape = txt[1][1]
num_frames_shape = txt[1][2]
if mpu.get_model_parallel_rank() != 0:
batch["mp4"] = torch.zeros(mp4_shape, device="cuda")
batch["fps"] = torch.zeros(fps_shape, device="cuda", dtype=torch.long)
batch["num_frames"] = torch.zeros(num_frames_shape, device="cuda", dtype=torch.long)
torch.distributed.broadcast(batch["mp4"], src=src, group=mpu.get_model_parallel_group())
torch.distributed.broadcast(batch["fps"], src=src, group=mpu.get_model_parallel_group())
torch.distributed.broadcast(batch["num_frames"], src=src, group=mpu.get_model_parallel_group())
return batch
def forward_step_eval(data_iterator, model, args, timers, only_log_video_latents=False, data_class=None):
if mpu.get_model_parallel_rank() == 0:
timers("data loader").start()
batch_video = next(data_iterator)
timers("data loader").stop()
if len(batch_video["mp4"].shape) == 6:
b, v = batch_video["mp4"].shape[:2]
batch_video["mp4"] = batch_video["mp4"].view(-1, *batch_video["mp4"].shape[2:])
txt = []
for i in range(b):
for j in range(v):
txt.append(batch_video["txt"][j][i])
batch_video["txt"] = txt
for key in batch_video:
if isinstance(batch_video[key], torch.Tensor):
batch_video[key] = batch_video[key].cuda()
else:
batch_video = {"mp4": None, "fps": None, "num_frames": None, "txt": None}
broad_cast_batch(batch_video)
if mpu.get_data_parallel_rank() == 0:
log_video(batch_video, model, args, only_log_video_latents=only_log_video_latents)
batch_video["global_step"] = args.iteration
loss, loss_dict = model.shared_step(batch_video)
for k in loss_dict:
if loss_dict[k].dtype == torch.bfloat16:
loss_dict[k] = loss_dict[k].to(torch.float32)
return loss, loss_dict
def forward_step(data_iterator, model, args, timers, data_class=None):
if mpu.get_model_parallel_rank() == 0:
timers("data loader").start()
batch = next(data_iterator)
timers("data loader").stop()
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].cuda()
if torch.distributed.get_rank() == 0:
if not os.path.exists(os.path.join(args.save, "training_config.yaml")):
configs = [OmegaConf.load(cfg) for cfg in args.base]
config = OmegaConf.merge(*configs)
os.makedirs(args.save, exist_ok=True)
OmegaConf.save(config=config, f=os.path.join(args.save, "training_config.yaml"))
else:
batch = {"mp4": None, "fps": None, "num_frames": None, "txt": None}
batch["global_step"] = args.iteration
broad_cast_batch(batch)
loss, loss_dict = model.shared_step(batch)
return loss, loss_dict
if __name__ == "__main__":
if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ:
os.environ["LOCAL_RANK"] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]
py_parser = argparse.ArgumentParser(add_help=False)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
data_class = get_obj_from_str(args.data_config["target"])
create_dataset_function = partial(data_class.create_dataset_function, **args.data_config["params"])
import yaml
configs = []
for config in args.base:
with open(config, "r") as f:
base_config = yaml.safe_load(f)
configs.append(base_config)
args.log_config = configs
training_main(
args,
model_cls=SATVideoDiffusionEngine,
forward_step_function=partial(forward_step, data_class=data_class),
forward_step_eval=partial(
forward_step_eval, data_class=data_class, only_log_video_latents=args.only_log_video_latents
),
create_dataset_function=create_dataset_function,
)
|