Upload neat\evolution.py with huggingface_hub
Browse files- neat//evolution.py +302 -0
neat//evolution.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NEAT evolution implementation."""
|
| 2 |
+
|
| 3 |
+
import jax
|
| 4 |
+
import jax.numpy as jnp
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List, Dict, Optional, Tuple, Callable
|
| 7 |
+
from .network import Network
|
| 8 |
+
from .genome import Genome
|
| 9 |
+
|
| 10 |
+
class NEATEvolution:
|
| 11 |
+
"""NEAT evolution implementation with structural mutations."""
|
| 12 |
+
|
| 13 |
+
DEFAULT_CONFIG = {
|
| 14 |
+
'node_add_prob': 0.2, # Standard node addition rate
|
| 15 |
+
'conn_add_prob': 0.3, # Standard connection addition rate
|
| 16 |
+
'weight_mutate_prob': 0.8, # High chance of weight mutation
|
| 17 |
+
'weight_replace_prob': 0.1, # Low chance of complete weight replacement
|
| 18 |
+
'weight_perturb_size': 0.5, # Standard weight perturbation size
|
| 19 |
+
'bias_mutate_prob': 0.8, # High chance of bias mutation
|
| 20 |
+
'bias_replace_prob': 0.1, # Low chance of complete bias replacement
|
| 21 |
+
'bias_perturb_size': 0.5, # Standard bias perturbation size
|
| 22 |
+
'complexity_coefficient': 0.0, # No complexity penalty
|
| 23 |
+
'species_distance': 2.0, # Standard species distance
|
| 24 |
+
'species_elitism': 2, # Keep top 2 from each species
|
| 25 |
+
'survival_threshold': 0.3 # Keep 30% of population
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
def __init__(self,
|
| 29 |
+
n_inputs: int,
|
| 30 |
+
n_outputs: int,
|
| 31 |
+
population_size: int,
|
| 32 |
+
config: Optional[Dict] = None,
|
| 33 |
+
key: Optional[jnp.ndarray] = None):
|
| 34 |
+
"""Initialize NEAT evolution.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
n_inputs: Number of input nodes (12 for volleyball)
|
| 38 |
+
n_outputs: Number of output nodes (3 for volleyball)
|
| 39 |
+
population_size: Size of population
|
| 40 |
+
config: Optional configuration parameters
|
| 41 |
+
key: Random key for JAX
|
| 42 |
+
"""
|
| 43 |
+
self.n_inputs = n_inputs
|
| 44 |
+
self.n_outputs = n_outputs
|
| 45 |
+
self.population_size = population_size
|
| 46 |
+
self.config = {**self.DEFAULT_CONFIG, **(config or {})}
|
| 47 |
+
|
| 48 |
+
# Initialize random key
|
| 49 |
+
if key is None:
|
| 50 |
+
self.key = jax.random.PRNGKey(0)
|
| 51 |
+
else:
|
| 52 |
+
self.key = key
|
| 53 |
+
|
| 54 |
+
# Initialize population
|
| 55 |
+
self.population = self._init_population()
|
| 56 |
+
self.generation = 0
|
| 57 |
+
self.innovation_number = 0
|
| 58 |
+
self.species = []
|
| 59 |
+
|
| 60 |
+
def _init_population(self) -> List[Genome]:
|
| 61 |
+
"""Initialize population with minimal networks."""
|
| 62 |
+
population = []
|
| 63 |
+
for _ in range(self.population_size):
|
| 64 |
+
# Split random key
|
| 65 |
+
self.key, subkey = jax.random.split(self.key)
|
| 66 |
+
|
| 67 |
+
# Create genome with proper input/output sizes
|
| 68 |
+
genome = Genome(self.n_inputs, self.n_outputs, subkey)
|
| 69 |
+
|
| 70 |
+
# Add random hidden nodes (between 2-6)
|
| 71 |
+
self.key, subkey = jax.random.split(self.key)
|
| 72 |
+
n_hidden = int(jax.random.randint(subkey, (), 2, 7))
|
| 73 |
+
|
| 74 |
+
hidden_nodes = []
|
| 75 |
+
for _ in range(n_hidden):
|
| 76 |
+
hidden_nodes.append(genome.add_node())
|
| 77 |
+
|
| 78 |
+
# Connect inputs to hidden with 50% probability
|
| 79 |
+
for i in range(self.n_inputs):
|
| 80 |
+
for h in hidden_nodes:
|
| 81 |
+
self.key, subkey = jax.random.split(self.key)
|
| 82 |
+
if jax.random.uniform(subkey) < 0.5:
|
| 83 |
+
self.key, subkey = jax.random.split(self.key)
|
| 84 |
+
weight = jax.random.normal(subkey) * 0.5
|
| 85 |
+
genome.add_connection(i, h, weight)
|
| 86 |
+
|
| 87 |
+
# Connect hidden to outputs with 50% probability
|
| 88 |
+
output_start = genome.n_nodes - self.n_outputs
|
| 89 |
+
for h in hidden_nodes:
|
| 90 |
+
for i in range(self.n_outputs):
|
| 91 |
+
self.key, subkey = jax.random.split(self.key)
|
| 92 |
+
if jax.random.uniform(subkey) < 0.5:
|
| 93 |
+
self.key, subkey = jax.random.split(self.key)
|
| 94 |
+
weight = jax.random.normal(subkey) * 0.5
|
| 95 |
+
genome.add_connection(h, output_start + i, weight)
|
| 96 |
+
|
| 97 |
+
# Add skip connections with 30% probability
|
| 98 |
+
for i in range(self.n_inputs):
|
| 99 |
+
for j in range(self.n_outputs):
|
| 100 |
+
self.key, subkey = jax.random.split(self.key)
|
| 101 |
+
if jax.random.uniform(subkey) < 0.3:
|
| 102 |
+
self.key, subkey = jax.random.split(self.key)
|
| 103 |
+
weight = jax.random.normal(subkey) * 0.3
|
| 104 |
+
genome.add_connection(i, output_start + j, weight)
|
| 105 |
+
|
| 106 |
+
population.append(genome)
|
| 107 |
+
return population
|
| 108 |
+
|
| 109 |
+
def ask(self) -> List[Network]:
|
| 110 |
+
"""Get current population as networks."""
|
| 111 |
+
return [Network(genome) for genome in self.population]
|
| 112 |
+
|
| 113 |
+
def tell(self, fitnesses: List[float]) -> None:
|
| 114 |
+
"""Update population based on fitness scores."""
|
| 115 |
+
# Sort population by fitness
|
| 116 |
+
sorted_pop = sorted(zip(self.population, fitnesses),
|
| 117 |
+
key=lambda x: x[1], reverse=True)
|
| 118 |
+
|
| 119 |
+
# For very small populations, keep at least one parent
|
| 120 |
+
n_parents = max(1, int(self.population_size * self.config['survival_threshold']))
|
| 121 |
+
parents = [p for p, _ in sorted_pop[:n_parents]]
|
| 122 |
+
|
| 123 |
+
# Ensure we have at least one parent
|
| 124 |
+
if not parents:
|
| 125 |
+
# If all fitnesses are equal (including all zeros), keep the first one
|
| 126 |
+
parents = [sorted_pop[0][0]]
|
| 127 |
+
|
| 128 |
+
# Create new population starting with the best performer
|
| 129 |
+
new_population = [parents[0]] # Always keep the best one
|
| 130 |
+
|
| 131 |
+
# Fill rest with mutated offspring
|
| 132 |
+
while len(new_population) < self.population_size:
|
| 133 |
+
# Select parent (with replacement)
|
| 134 |
+
parent = parents[0] if len(parents) == 1 else np.random.choice(parents)
|
| 135 |
+
child = parent.copy()
|
| 136 |
+
|
| 137 |
+
# Mutate child
|
| 138 |
+
child = self._mutate_genome(child, self.key)
|
| 139 |
+
|
| 140 |
+
new_population.append(child)
|
| 141 |
+
|
| 142 |
+
self.population = new_population
|
| 143 |
+
self.generation += 1
|
| 144 |
+
|
| 145 |
+
def _mutate_genome(self, genome: Genome, key: jnp.ndarray) -> Genome:
|
| 146 |
+
"""Mutate a genome.
|
| 147 |
+
|
| 148 |
+
Mutation types:
|
| 149 |
+
1. Add new nodes (30% chance)
|
| 150 |
+
2. Add new connections (50% chance)
|
| 151 |
+
3. Modify weights (80% chance)
|
| 152 |
+
4. Modify biases (70% chance)
|
| 153 |
+
5. Enable/disable connections (20% chance)
|
| 154 |
+
"""
|
| 155 |
+
# Split random key
|
| 156 |
+
keys = jax.random.split(key, 6)
|
| 157 |
+
|
| 158 |
+
# Add nodes
|
| 159 |
+
if jax.random.uniform(keys[0]) < self.config['node_add_prob']:
|
| 160 |
+
# Add 1-3 nodes with decreasing probability
|
| 161 |
+
n_nodes = 1
|
| 162 |
+
while jax.random.uniform(keys[1]) < 0.3 and n_nodes < 4:
|
| 163 |
+
# Pick random enabled connection
|
| 164 |
+
enabled_conns = [(src, dst) for (src, dst), enabled in genome.connections.items() if enabled]
|
| 165 |
+
if enabled_conns:
|
| 166 |
+
src, dst = enabled_conns[int(jax.random.randint(keys[2], (), 0, len(enabled_conns)))]
|
| 167 |
+
genome.add_node_between(src, dst)
|
| 168 |
+
n_nodes += 1
|
| 169 |
+
|
| 170 |
+
# Add connections
|
| 171 |
+
if jax.random.uniform(keys[1]) < self.config['conn_add_prob']:
|
| 172 |
+
# Add multiple connections with decreasing probability
|
| 173 |
+
n_conns = 0
|
| 174 |
+
max_attempts = 20 # Prevent infinite loops
|
| 175 |
+
attempts = 0
|
| 176 |
+
|
| 177 |
+
while attempts < max_attempts and n_conns < 5:
|
| 178 |
+
# Pick random nodes
|
| 179 |
+
src = int(jax.random.randint(keys[2], (), 0, genome.n_nodes))
|
| 180 |
+
dst = int(jax.random.randint(keys[3], (), 0, genome.n_nodes))
|
| 181 |
+
|
| 182 |
+
# Add connection if valid and not already present
|
| 183 |
+
if src != dst and (src, dst) not in genome.connections:
|
| 184 |
+
weight = jax.random.normal(keys[4]) * 0.5
|
| 185 |
+
genome.add_connection(src, dst, weight)
|
| 186 |
+
n_conns += 1
|
| 187 |
+
attempts += 1
|
| 188 |
+
|
| 189 |
+
# Mutate weights
|
| 190 |
+
if jax.random.uniform(keys[2]) < self.config['weight_mutate_prob']:
|
| 191 |
+
for conn in list(genome.connections.keys()):
|
| 192 |
+
if genome.connections[conn]: # Only mutate enabled connections
|
| 193 |
+
if jax.random.uniform(keys[3]) < self.config['weight_replace_prob']:
|
| 194 |
+
# Reset weight
|
| 195 |
+
genome.weights[conn] = jax.random.normal(keys[4]) * self.config['weight_perturb_size']
|
| 196 |
+
else:
|
| 197 |
+
# Perturb weight
|
| 198 |
+
genome.weights[conn] += jax.random.normal(keys[4]) * self.config['weight_perturb_size']
|
| 199 |
+
|
| 200 |
+
# Mutate biases
|
| 201 |
+
if jax.random.uniform(keys[3]) < self.config['bias_mutate_prob']:
|
| 202 |
+
for node in list(genome.biases.keys()):
|
| 203 |
+
if jax.random.uniform(keys[4]) < self.config['bias_replace_prob']:
|
| 204 |
+
# Reset bias
|
| 205 |
+
genome.biases[node] = jax.random.normal(keys[5]) * self.config['bias_perturb_size']
|
| 206 |
+
else:
|
| 207 |
+
# Perturb bias
|
| 208 |
+
genome.biases[node] += jax.random.normal(keys[5]) * self.config['bias_perturb_size']
|
| 209 |
+
|
| 210 |
+
# Enable/disable connections
|
| 211 |
+
for conn in list(genome.connections.keys()):
|
| 212 |
+
if jax.random.uniform(keys[5]) < 0.2: # 20% chance per connection
|
| 213 |
+
genome.connections[conn] = not genome.connections[conn]
|
| 214 |
+
|
| 215 |
+
return genome
|
| 216 |
+
|
| 217 |
+
def get_average_nodes(self) -> float:
|
| 218 |
+
"""Get average number of nodes in population."""
|
| 219 |
+
return np.mean([g.n_nodes for g in self.population])
|
| 220 |
+
|
| 221 |
+
def get_average_connections(self) -> float:
|
| 222 |
+
"""Get average number of connections in population."""
|
| 223 |
+
return np.mean([len(g.connections) for g in self.population])
|
| 224 |
+
|
| 225 |
+
def get_activation_distribution(self) -> Dict[str, float]:
|
| 226 |
+
"""Get distribution of activation functions in population.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
Dictionary mapping activation function names to their frequency
|
| 230 |
+
"""
|
| 231 |
+
# For now we only use ReLU
|
| 232 |
+
return {'relu': 1.0}
|
| 233 |
+
|
| 234 |
+
def run_evolution(self, evaluator: Callable[[Network], float], max_generations: int,
|
| 235 |
+
fitness_threshold: float, reset_mutations: bool = True,
|
| 236 |
+
max_stagnation: int = 15, verbose: bool = True) -> Tuple[Network, float]:
|
| 237 |
+
"""Run the evolution process
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
evaluator: Function that takes a network and returns its fitness
|
| 241 |
+
max_generations: Maximum number of generations to run
|
| 242 |
+
fitness_threshold: Target fitness to achieve
|
| 243 |
+
reset_mutations: Whether to reset mutations when fitness improves
|
| 244 |
+
max_stagnation: Maximum generations without improvement before stopping
|
| 245 |
+
verbose: Whether to print progress
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
Tuple of (best network, best fitness)
|
| 249 |
+
"""
|
| 250 |
+
best_fitness = float('-inf')
|
| 251 |
+
best_network = None
|
| 252 |
+
stagnation_counter = 0
|
| 253 |
+
|
| 254 |
+
for generation in range(max_generations):
|
| 255 |
+
# Evaluate current population
|
| 256 |
+
fitnesses = []
|
| 257 |
+
for genome in self.population:
|
| 258 |
+
network = genome.to_network()
|
| 259 |
+
fitness = evaluator(network)
|
| 260 |
+
genome.fitness = fitness
|
| 261 |
+
fitnesses.append(fitness)
|
| 262 |
+
|
| 263 |
+
# Update best if improved
|
| 264 |
+
if fitness > best_fitness:
|
| 265 |
+
best_fitness = fitness
|
| 266 |
+
best_network = network
|
| 267 |
+
stagnation_counter = 0
|
| 268 |
+
if reset_mutations:
|
| 269 |
+
self.reset_innovation()
|
| 270 |
+
|
| 271 |
+
# Get statistics
|
| 272 |
+
avg_fitness = sum(fitnesses) / len(fitnesses)
|
| 273 |
+
generation_best = max(fitnesses)
|
| 274 |
+
|
| 275 |
+
# Print progress
|
| 276 |
+
if verbose:
|
| 277 |
+
print(f"\nGeneration {generation}:")
|
| 278 |
+
print(f" Best Fitness: {best_fitness:.2f}")
|
| 279 |
+
print(f" Generation Best: {generation_best:.2f}")
|
| 280 |
+
print(f" Average Nodes: {self.get_average_nodes():.1f}")
|
| 281 |
+
print(f" Average Connections: {self.get_average_connections():.1f}")
|
| 282 |
+
|
| 283 |
+
# Check for improvement
|
| 284 |
+
if generation_best <= best_fitness:
|
| 285 |
+
stagnation_counter += 1
|
| 286 |
+
else:
|
| 287 |
+
stagnation_counter = 0
|
| 288 |
+
|
| 289 |
+
# Create next generation
|
| 290 |
+
self.tell(fitnesses)
|
| 291 |
+
|
| 292 |
+
# Stop if stagnated too long
|
| 293 |
+
if stagnation_counter >= max_stagnation:
|
| 294 |
+
if verbose:
|
| 295 |
+
print(f"\nStopping: No improvement for {max_stagnation} generations")
|
| 296 |
+
break
|
| 297 |
+
|
| 298 |
+
if verbose:
|
| 299 |
+
print("\nTraining complete!")
|
| 300 |
+
print(f"Best fitness achieved: {best_fitness:.2f}")
|
| 301 |
+
|
| 302 |
+
return best_network, best_fitness
|