Upload backprop_test.py with huggingface_hub
Browse files- backprop_test.py +100 -0
backprop_test.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Test Backprop NEAT on 2D classification tasks."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import jax
|
| 5 |
+
import jax.numpy as jnp
|
| 6 |
+
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import networkx as nx
|
| 9 |
+
from neat.datasets import (generate_xor_data, generate_circle_data,
|
| 10 |
+
generate_spiral_data, plot_dataset)
|
| 11 |
+
from neat.backprop_neat import BackpropNEAT
|
| 12 |
+
|
| 13 |
+
def train_and_visualize(neat: BackpropNEAT, x: jnp.ndarray, y: jnp.ndarray,
|
| 14 |
+
dataset_name: str, viz_dir: str = 'visualizations'):
|
| 15 |
+
"""Train network and save visualizations."""
|
| 16 |
+
os.makedirs(viz_dir, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
# Plot dataset
|
| 19 |
+
plot_dataset(x, y, f'{dataset_name} Dataset')
|
| 20 |
+
plt.savefig(os.path.join(viz_dir, f'{dataset_name}_dataset.png'))
|
| 21 |
+
plt.close()
|
| 22 |
+
|
| 23 |
+
# Training loop
|
| 24 |
+
n_generations = 50
|
| 25 |
+
n_epochs = 100
|
| 26 |
+
|
| 27 |
+
for gen in range(n_generations):
|
| 28 |
+
# Train networks with backprop
|
| 29 |
+
neat.train_networks(x, y, n_epochs=n_epochs)
|
| 30 |
+
|
| 31 |
+
# Evaluate fitness
|
| 32 |
+
neat.evaluate_fitness(x, y)
|
| 33 |
+
|
| 34 |
+
# Get best network
|
| 35 |
+
best_network = max(neat.population, key=lambda n: n.fitness)
|
| 36 |
+
|
| 37 |
+
# Save visualizations every 10 generations
|
| 38 |
+
if gen % 10 == 0:
|
| 39 |
+
gen_dir = os.path.join(viz_dir, f'gen_{gen:03d}')
|
| 40 |
+
os.makedirs(gen_dir, exist_ok=True)
|
| 41 |
+
|
| 42 |
+
# Visualize network architecture
|
| 43 |
+
best_network.visualize(
|
| 44 |
+
save_path=os.path.join(gen_dir, f'{dataset_name}_network.png'))
|
| 45 |
+
|
| 46 |
+
# Plot decision boundary
|
| 47 |
+
plt.figure(figsize=(8, 8))
|
| 48 |
+
|
| 49 |
+
# Create grid of points
|
| 50 |
+
xx, yy = jnp.meshgrid(jnp.linspace(-1, 1, 100),
|
| 51 |
+
jnp.linspace(-1, 1, 100))
|
| 52 |
+
grid_points = jnp.stack([xx.ravel(), yy.ravel()], axis=1)
|
| 53 |
+
|
| 54 |
+
# Get predictions
|
| 55 |
+
predictions = jnp.array([best_network.forward(p)[0]
|
| 56 |
+
for p in grid_points])
|
| 57 |
+
predictions = predictions.reshape(xx.shape)
|
| 58 |
+
|
| 59 |
+
# Plot decision boundary
|
| 60 |
+
plt.contourf(xx, yy, predictions, alpha=0.4,
|
| 61 |
+
levels=jnp.linspace(0, 1, 20))
|
| 62 |
+
plot_dataset(x, y, f'{dataset_name} - Generation {gen}')
|
| 63 |
+
plt.savefig(os.path.join(gen_dir,
|
| 64 |
+
f'{dataset_name}_decision_boundary.png'))
|
| 65 |
+
plt.close()
|
| 66 |
+
|
| 67 |
+
# Evolve population
|
| 68 |
+
neat.evolve_population()
|
| 69 |
+
|
| 70 |
+
print(f'Generation {gen}: Best Fitness = {best_network.fitness:.4f}')
|
| 71 |
+
|
| 72 |
+
def main():
|
| 73 |
+
"""Run experiments on different datasets."""
|
| 74 |
+
# Parameters
|
| 75 |
+
n_points = 50 # Points per quadrant/class
|
| 76 |
+
noise_level = 0.1
|
| 77 |
+
population_size = 50
|
| 78 |
+
|
| 79 |
+
# Test on different datasets
|
| 80 |
+
datasets = [
|
| 81 |
+
('XOR', generate_xor_data),
|
| 82 |
+
('Circle', generate_circle_data),
|
| 83 |
+
('Spiral', generate_spiral_data)
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
for name, generator in datasets:
|
| 87 |
+
print(f'\nTraining on {name} dataset:')
|
| 88 |
+
|
| 89 |
+
# Generate dataset
|
| 90 |
+
x, y = generator(n_points, noise_level)
|
| 91 |
+
|
| 92 |
+
# Create and train NEAT
|
| 93 |
+
neat = BackpropNEAT(n_inputs=2, n_outputs=1,
|
| 94 |
+
population_size=population_size)
|
| 95 |
+
|
| 96 |
+
# Train and visualize
|
| 97 |
+
train_and_visualize(neat, x, y, name)
|
| 98 |
+
|
| 99 |
+
if __name__ == '__main__':
|
| 100 |
+
main()
|