|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor, TimeoutError |
|
import logging |
|
|
|
|
|
st.set_page_config(page_title="Chat with Quasar-32B", layout="wide") |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.sidebar.write("### Required Packages") |
|
st.sidebar.code(""" |
|
pip install transformers torch streamlit |
|
""") |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
"""Load model and tokenizer with caching""" |
|
try: |
|
st.spinner("Loading model... This may take a few minutes") |
|
logger.info("Starting model loading...") |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"NousResearch/Llama-3.2-1B", |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-3.2-1B") |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
logger.info("Model loaded successfully") |
|
return model, tokenizer |
|
except Exception as e: |
|
logger.error(f"Error loading model: {str(e)}") |
|
st.error(f"Error loading model: {str(e)}") |
|
return None, None |
|
|
|
def check_for_repetition(text, threshold=3): |
|
"""Check if the generated text has too many repetitions""" |
|
words = text.split() |
|
if len(words) < threshold: |
|
return False |
|
|
|
|
|
for i in range(len(words) - threshold): |
|
phrase = ' '.join(words[i:i+threshold]) |
|
if text.count(phrase) > 2: |
|
return True |
|
return False |
|
|
|
def generate_response_with_timeout(model, tokenizer, prompt, timeout_seconds=30): |
|
"""Generate response with timeout and repetition checking""" |
|
try: |
|
|
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=256 |
|
) |
|
|
|
start_time = time.time() |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs["input_ids"], |
|
max_length=100, |
|
min_length=20, |
|
num_return_sequences=1, |
|
temperature=0.8, |
|
pad_token_id=tokenizer.pad_token_id, |
|
attention_mask=inputs["attention_mask"], |
|
do_sample=True, |
|
top_p=0.92, |
|
top_k=40, |
|
repetition_penalty=1.5, |
|
no_repeat_ngram_size=3, |
|
early_stopping=True |
|
) |
|
|
|
generation_time = time.time() - start_time |
|
logger.info(f"Response generated in {generation_time:.2f} seconds") |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
response = response.replace(prompt, "").strip() |
|
|
|
|
|
if check_for_repetition(response): |
|
logger.warning("Detected repetition, retrying with stricter parameters") |
|
return "I apologize, but I'm having trouble generating a coherent response. Could you try rephrasing your question?" |
|
|
|
return response |
|
|
|
except Exception as e: |
|
logger.error(f"Error in generation: {str(e)}") |
|
return f"Error generating response: {str(e)}" |
|
|
|
|
|
with st.sidebar: |
|
st.write("### System Information") |
|
st.write("Model: Quasar-32B") |
|
|
|
|
|
device = "GPU" if torch.cuda.is_available() else "CPU" |
|
st.write(f"Running on: {device}") |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
st.warning("⚠️ Running on CPU - Responses may be very slow. Consider using a GPU or a smaller model.") |
|
|
|
|
|
st.write("### Model Settings") |
|
if 'temperature' not in st.session_state: |
|
st.session_state.temperature = 0.8 |
|
if 'max_length' not in st.session_state: |
|
st.session_state.max_length = 100 |
|
|
|
st.session_state.temperature = st.slider("Temperature", 0.1, 1.0, st.session_state.temperature) |
|
st.session_state.max_length = st.slider("Max Length", 50, 200, st.session_state.max_length) |
|
|
|
st.title("Chat with Quasar-32B") |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
model, tokenizer = load_model() |
|
|
|
|
|
st.write("### Chat") |
|
chat_container = st.container() |
|
|
|
|
|
with chat_container: |
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Type your message here"): |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
with chat_container: |
|
with st.chat_message("user"): |
|
st.write(prompt) |
|
|
|
|
|
if model and tokenizer: |
|
with st.chat_message("assistant"): |
|
try: |
|
with st.spinner("Generating response... (timeout: 30s)"): |
|
with ThreadPoolExecutor() as executor: |
|
future = executor.submit( |
|
generate_response_with_timeout, |
|
model, |
|
tokenizer, |
|
prompt |
|
) |
|
response = future.result(timeout=200) |
|
|
|
st.write(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
except TimeoutError: |
|
error_msg = "Response generation timed out. The model might be overloaded." |
|
st.error(error_msg) |
|
logger.error(error_msg) |
|
except Exception as e: |
|
error_msg = f"Error generating response: {str(e)}" |
|
st.error(error_msg) |
|
logger.error(error_msg) |
|
else: |
|
st.error("Model failed to load. Please check your configuration.") |
|
|
|
|
|
if st.button("Clear Chat History"): |
|
st.session_state.messages = [] |
|
st.experimental_rerun() |
|
|