import argparse import os from typing import List import google.generativeai as genai import chromadb from chromadb.utils import embedding_functions model = genai.GenerativeModel("gemini-pro") def build_prompt(query: str, context: List[str]) -> str: """ Builds a prompt for the LLM. # This function builds a prompt for the LLM. It takes the original query, and the returned context, and asks the model to answer the question based only on what's in the context, not what's in its weights. Args: query (str): The original query. context (List[str]): The context of the query, returned by embedding search. Returns: A prompt for the LLM (str). """ base_prompt = { "content": "I am going to ask you a question, which I would like you to answer" " based only on the provided context, and not any other information." " If there is not enough information in the context to answer the question," ' say "I am not sure", then try to make a guess.' " Break your answer up into nicely readable paragraphs.", } user_prompt = { "content": f" The question is '{query}'. Here is all the context you have:" f'{(" ").join(context)}', } # combine the prompts to output a single prompt string system = f"{base_prompt['content']} {user_prompt['content']}" return system def get_gemini_response(query: str, context: List[str]) -> str: """ Queries the Gemini API to get a response to the question. Args: query (str): The original query. context (List[str]): The context of the query, returned by embedding search. Returns: A response to the question. """ response = model.generate_content(build_prompt(query, context)) return response.text def main( collection_name: str = "documents_collection", persist_directory: str = "." ) -> None: # Check if the GOOGLE_API_KEY environment variable is set. Prompt the user to set it if not. google_api_key = None if "GOOGLE_API_KEY" not in os.environ: gapikey = input("Please enter your Google API Key: ") genai.configure(api_key=gapikey) google_api_key = gapikey else: google_api_key = os.environ["GOOGLE_API_KEY"] # Instantiate a persistent chroma client in the persist_directory. # This will automatically load any previously saved collections. # Learn more at docs.trychroma.com client = chromadb.PersistentClient(path=persist_directory) # create embedding function embedding_function = embedding_functions.GoogleGenerativeAIEmbeddingFunction(api_key=google_api_key, task_type="RETRIEVAL_QUERY") # Get the collection. collection = client.get_collection( name=collection_name, embedding_function=embedding_function ) # We use a simple input loop. while True: # Get the user's query query = input("Query: ") if len(query) == 0: print("Please enter a question. Ctrl+C to Quit.\n") continue print("\nThinking...\n") # Query the collection to get the 5 most relevant results results = collection.query( query_texts=[query], n_results=5, include=["documents", "metadatas"] ) sources = "\n".join( [ f"{result['filename']}: line {result['line_number']}" for result in results["metadatas"][0] # type: ignore ] ) # Get the response from Gemini response = get_gemini_response(query, results["documents"][0]) # type: ignore # Output, with sources print(response) print("\n") print(f"Source documents:\n{sources}") print("\n") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Load documents from a directory into a Chroma collection" ) parser.add_argument( "--persist_directory", type=str, default="chroma_storage", help="The directory where you want to store the Chroma collection", ) parser.add_argument( "--collection_name", type=str, default="documents_collection", help="The name of the Chroma collection", ) # Parse arguments args = parser.parse_args() main( collection_name=args.collection_name, persist_directory=args.persist_directory, )