File size: 20,927 Bytes
287a0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import pytest
from typing import Generator, List, Callable, Iterator, Type, cast
from chromadb.config import System, Settings
from chromadb.test.conftest import ProducerFn
from chromadb.types import (
    SubmitEmbeddingRecord,
    VectorQuery,
    Operation,
    ScalarEncoding,
    Segment,
    SegmentScope,
    SeqId,
    Vector,
)
from chromadb.ingest import Producer
from chromadb.segment import VectorReader
import uuid
import time

from chromadb.segment.impl.vector.local_hnsw import (
    LocalHnswSegment,
)

from chromadb.segment.impl.vector.local_persistent_hnsw import (
    PersistentLocalHnswSegment,
)

from chromadb.test.property.strategies import test_hnsw_config
from pytest import FixtureRequest
from itertools import count
import tempfile
import os
import shutil


def sqlite() -> Generator[System, None, None]:
    """Fixture generator for sqlite DB"""
    save_path = tempfile.mkdtemp()
    settings = Settings(
        allow_reset=True,
        is_persistent=False,
        persist_directory=save_path,
    )
    system = System(settings)
    system.start()
    yield system
    system.stop()
    if os.path.exists(save_path):
        shutil.rmtree(save_path)


def sqlite_persistent() -> Generator[System, None, None]:
    """Fixture generator for sqlite DB"""
    save_path = tempfile.mkdtemp()
    settings = Settings(
        allow_reset=True,
        is_persistent=True,
        persist_directory=save_path,
    )
    system = System(settings)
    system.start()
    yield system
    system.stop()
    if os.path.exists(save_path):
        shutil.rmtree(save_path)


# We will excercise in memory, persistent sqlite with both ephemeral and persistent hnsw.
# We technically never expose persitent sqlite with memory hnsw to users, but it's a valid
# configuration, so we test it here.
def system_fixtures() -> List[Callable[[], Generator[System, None, None]]]:
    return [sqlite, sqlite_persistent]


@pytest.fixture(scope="module", params=system_fixtures())
def system(request: FixtureRequest) -> Generator[System, None, None]:
    yield next(request.param())


@pytest.fixture(scope="function")
def sample_embeddings() -> Iterator[SubmitEmbeddingRecord]:
    """Generate a sequence of embeddings with the property that for each embedding
    (other than the first and last), it's nearest neighbor is the previous in the
    sequence, and it's second nearest neighbor is the subsequent"""

    def create_record(i: int) -> SubmitEmbeddingRecord:
        vector = [i**1.1, i**1.1]
        record = SubmitEmbeddingRecord(
            id=f"embedding_{i}",
            embedding=vector,
            encoding=ScalarEncoding.FLOAT32,
            metadata=None,
            operation=Operation.ADD,
            collection_id=uuid.UUID(int=0),
        )
        return record

    return (create_record(i) for i in count())


def vector_readers() -> List[Type[VectorReader]]:
    return [LocalHnswSegment, PersistentLocalHnswSegment]


@pytest.fixture(scope="module", params=vector_readers())
def vector_reader(request: FixtureRequest) -> Generator[Type[VectorReader], None, None]:
    yield request.param


def create_random_segment_definition() -> Segment:
    return Segment(
        id=uuid.uuid4(),
        type="test_type",
        scope=SegmentScope.VECTOR,
        topic="persistent://test/test/test_topic_1",
        collection=None,
        metadata=test_hnsw_config,
    )


def sync(segment: VectorReader, seq_id: SeqId) -> None:
    # Try for up to 5 seconds, then throw a TimeoutError
    start = time.time()
    while time.time() - start < 5:
        if segment.max_seqid() >= seq_id:
            return
        time.sleep(0.25)
    raise TimeoutError(f"Timed out waiting for seq_id {seq_id}")


def test_insert_and_count(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)

    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    max_id = produce_fns(
        producer=producer, topic=topic, n=3, embeddings=sample_embeddings
    )[1][-1]

    segment = vector_reader(system, segment_definition)
    segment.start()

    sync(segment, max_id)

    assert segment.count() == 3

    max_id = produce_fns(
        producer=producer, topic=topic, n=3, embeddings=sample_embeddings
    )[1][-1]

    sync(segment, max_id)
    assert segment.count() == 6


def approx_equal(a: float, b: float, epsilon: float = 0.0001) -> bool:
    return abs(a - b) < epsilon


def approx_equal_vector(a: Vector, b: Vector, epsilon: float = 0.0001) -> bool:
    return all(approx_equal(x, y, epsilon) for x, y in zip(a, b))


def test_get_vectors(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    embeddings, seq_ids = produce_fns(
        producer=producer, topic=topic, embeddings=sample_embeddings, n=10
    )

    sync(segment, seq_ids[-1])

    # Get all items
    vectors = segment.get_vectors()
    assert len(vectors) == len(embeddings)
    vectors = sorted(vectors, key=lambda v: v["id"])
    for actual, expected, seq_id in zip(vectors, embeddings, seq_ids):
        assert actual["id"] == expected["id"]
        assert approx_equal_vector(
            actual["embedding"], cast(Vector, expected["embedding"])
        )
        assert actual["seq_id"] == seq_id

    # Get selected IDs
    ids = [e["id"] for e in embeddings[5:]]
    vectors = segment.get_vectors(ids=ids)
    assert len(vectors) == 5
    vectors = sorted(vectors, key=lambda v: v["id"])
    for actual, expected, seq_id in zip(vectors, embeddings[5:], seq_ids[5:]):
        assert actual["id"] == expected["id"]
        assert approx_equal_vector(
            actual["embedding"], cast(Vector, expected["embedding"])
        )
        assert actual["seq_id"] == seq_id


def test_ann_query(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    embeddings, seq_ids = produce_fns(
        producer=producer, topic=topic, embeddings=sample_embeddings, n=100
    )

    sync(segment, seq_ids[-1])

    # Each item is its own nearest neighbor (one at a time)
    for e in embeddings:
        vector = cast(Vector, e["embedding"])
        query = VectorQuery(
            vectors=[vector],
            k=1,
            allowed_ids=None,
            options=None,
            include_embeddings=True,
        )
        results = segment.query_vectors(query)
        assert len(results) == 1
        assert len(results[0]) == 1
        assert results[0][0]["id"] == e["id"]
        assert results[0][0]["embedding"] is not None
        assert approx_equal_vector(results[0][0]["embedding"], vector)

    # Each item is its own nearest neighbor (all at once)
    vectors = [cast(Vector, e["embedding"]) for e in embeddings]
    query = VectorQuery(
        vectors=vectors, k=1, allowed_ids=None, options=None, include_embeddings=False
    )
    results = segment.query_vectors(query)
    assert len(results) == len(embeddings)
    for r, e in zip(results, embeddings):
        assert len(r) == 1
        assert r[0]["id"] == e["id"]

    # Each item's 3 nearest neighbors are itself and the item before and after
    test_embeddings = embeddings[1:-1]
    vectors = [cast(Vector, e["embedding"]) for e in test_embeddings]
    query = VectorQuery(
        vectors=vectors, k=3, allowed_ids=None, options=None, include_embeddings=False
    )
    results = segment.query_vectors(query)
    assert len(results) == len(test_embeddings)

    for r, e, i in zip(results, test_embeddings, range(1, len(test_embeddings))):
        assert len(r) == 3
        assert r[0]["id"] == embeddings[i]["id"]
        assert r[1]["id"] == embeddings[i - 1]["id"]
        assert r[2]["id"] == embeddings[i + 1]["id"]


def test_delete(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    embeddings, seq_ids = produce_fns(
        producer=producer, topic=topic, embeddings=sample_embeddings, n=5
    )

    sync(segment, seq_ids[-1])
    assert segment.count() == 5

    delete_record = SubmitEmbeddingRecord(
        id=embeddings[0]["id"],
        embedding=None,
        encoding=None,
        metadata=None,
        operation=Operation.DELETE,
        collection_id=uuid.UUID(int=0),
    )
    assert isinstance(seq_ids, List)
    seq_ids.append(
        produce_fns(
            producer=producer,
            topic=topic,
            n=1,
            embeddings=(delete_record for _ in range(1)),
        )[1][0]
    )

    sync(segment, seq_ids[-1])

    # Assert that the record is gone using `count`
    assert segment.count() == 4

    # Assert that the record is gone using `get`
    assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
    results = segment.get_vectors()
    assert len(results) == 4
    # get_vectors returns results in arbitrary order
    results = sorted(results, key=lambda v: v["id"])
    for actual, expected in zip(results, embeddings[1:]):
        assert actual["id"] == expected["id"]
        assert approx_equal_vector(
            actual["embedding"], cast(Vector, expected["embedding"])
        )

    # Assert that the record is gone from KNN search
    vector = cast(Vector, embeddings[0]["embedding"])
    query = VectorQuery(
        vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
    )
    knn_results = segment.query_vectors(query)
    assert len(results) == 4
    assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])

    # Delete is idempotent
    seq_ids.append(
        produce_fns(
            producer=producer,
            topic=topic,
            n=1,
            embeddings=(delete_record for _ in range(1)),
        )[1][0]
    )

    sync(segment, seq_ids[-1])

    assert segment.count() == 4


def _test_update(
    producer: Producer,
    topic: str,
    segment: VectorReader,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    operation: Operation,
) -> None:
    """Tests the common code paths between update & upsert"""

    embeddings = [next(sample_embeddings) for i in range(3)]

    seq_ids: List[SeqId] = []
    for e in embeddings:
        seq_ids.append(producer.submit_embedding(topic, e))

    sync(segment, seq_ids[-1])
    assert segment.count() == 3

    seq_ids.append(
        producer.submit_embedding(
            topic,
            SubmitEmbeddingRecord(
                id=embeddings[0]["id"],
                embedding=[10.0, 10.0],
                encoding=ScalarEncoding.FLOAT32,
                metadata=None,
                operation=operation,
                collection_id=uuid.UUID(int=0),
            ),
        )
    )

    sync(segment, seq_ids[-1])

    # Test new data from get_vectors
    assert segment.count() == 3
    results = segment.get_vectors()
    assert len(results) == 3
    results = segment.get_vectors(ids=[embeddings[0]["id"]])
    assert results[0]["embedding"] == [10.0, 10.0]

    # Test querying at the old location
    vector = cast(Vector, embeddings[0]["embedding"])
    query = VectorQuery(
        vectors=[vector], k=3, allowed_ids=None, options=None, include_embeddings=False
    )
    knn_results = segment.query_vectors(query)[0]
    assert knn_results[0]["id"] == embeddings[1]["id"]
    assert knn_results[1]["id"] == embeddings[2]["id"]
    assert knn_results[2]["id"] == embeddings[0]["id"]

    # Test querying at the new location
    vector = [10.0, 10.0]
    query = VectorQuery(
        vectors=[vector], k=3, allowed_ids=None, options=None, include_embeddings=False
    )
    knn_results = segment.query_vectors(query)[0]
    assert knn_results[0]["id"] == embeddings[0]["id"]
    assert knn_results[1]["id"] == embeddings[2]["id"]
    assert knn_results[2]["id"] == embeddings[1]["id"]


def test_update(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    _test_update(producer, topic, segment, sample_embeddings, Operation.UPDATE)

    # test updating a nonexistent record
    update_record = SubmitEmbeddingRecord(
        id="no_such_record",
        embedding=[10.0, 10.0],
        encoding=ScalarEncoding.FLOAT32,
        metadata=None,
        operation=Operation.UPDATE,
        collection_id=uuid.UUID(int=0),
    )
    seq_id = produce_fns(
        producer=producer,
        topic=topic,
        n=1,
        embeddings=(update_record for _ in range(1)),
    )[1][0]

    sync(segment, seq_id)

    assert segment.count() == 3
    assert segment.get_vectors(ids=["no_such_record"]) == []


def test_upsert(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    _test_update(producer, topic, segment, sample_embeddings, Operation.UPSERT)

    # test updating a nonexistent record
    upsert_record = SubmitEmbeddingRecord(
        id="no_such_record",
        embedding=[42, 42],
        encoding=ScalarEncoding.FLOAT32,
        metadata=None,
        operation=Operation.UPSERT,
        collection_id=uuid.UUID(int=0),
    )
    seq_id = produce_fns(
        producer=producer,
        topic=topic,
        n=1,
        embeddings=(upsert_record for _ in range(1)),
    )[1][0]

    sync(segment, seq_id)

    assert segment.count() == 4
    result = segment.get_vectors(ids=["no_such_record"])
    assert len(result) == 1
    assert approx_equal_vector(result[0]["embedding"], [42, 42])


def test_delete_without_add(
    system: System,
    vector_reader: Type[VectorReader],
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    assert segment.count() == 0

    delete_record = SubmitEmbeddingRecord(
        id="not_in_db",
        embedding=None,
        encoding=None,
        metadata=None,
        operation=Operation.DELETE,
        collection_id=uuid.UUID(int=0),
    )

    try:
        producer.submit_embedding(topic, delete_record)
    except BaseException:
        pytest.fail("Unexpected error. Deleting on an empty segment should not raise.")


def test_delete_with_local_segment_storage(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    embeddings, seq_ids = produce_fns(
        producer=producer, topic=topic, embeddings=sample_embeddings, n=5
    )

    sync(segment, seq_ids[-1])
    assert segment.count() == 5

    delete_record = SubmitEmbeddingRecord(
        id=embeddings[0]["id"],
        embedding=None,
        encoding=None,
        metadata=None,
        operation=Operation.DELETE,
        collection_id=uuid.UUID(int=0),
    )
    assert isinstance(seq_ids, List)
    seq_ids.append(
        produce_fns(
            producer=producer,
            topic=topic,
            n=1,
            embeddings=(delete_record for _ in range(1)),
        )[1][0]
    )

    sync(segment, seq_ids[-1])

    # Assert that the record is gone using `count`
    assert segment.count() == 4

    # Assert that the record is gone using `get`
    assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
    results = segment.get_vectors()
    assert len(results) == 4
    # get_vectors returns results in arbitrary order
    results = sorted(results, key=lambda v: v["id"])
    for actual, expected in zip(results, embeddings[1:]):
        assert actual["id"] == expected["id"]
        assert approx_equal_vector(
            actual["embedding"], cast(Vector, expected["embedding"])
        )

    # Assert that the record is gone from KNN search
    vector = cast(Vector, embeddings[0]["embedding"])
    query = VectorQuery(
        vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
    )
    knn_results = segment.query_vectors(query)
    assert len(results) == 4
    assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])

    # Delete is idempotent
    if isinstance(segment, PersistentLocalHnswSegment):
        assert os.path.exists(segment._get_storage_folder())
        segment.delete()
        assert not os.path.exists(segment._get_storage_folder())
        segment.delete()  # should not raise
    elif isinstance(segment, LocalHnswSegment):
        with pytest.raises(NotImplementedError):
            segment.delete()


def test_reset_state_ignored_for_allow_reset_false(
    system: System,
    sample_embeddings: Iterator[SubmitEmbeddingRecord],
    vector_reader: Type[VectorReader],
    produce_fns: ProducerFn,
) -> None:
    producer = system.instance(Producer)
    system.reset_state()
    segment_definition = create_random_segment_definition()
    topic = str(segment_definition["topic"])

    segment = vector_reader(system, segment_definition)
    segment.start()

    embeddings, seq_ids = produce_fns(
        producer=producer, topic=topic, embeddings=sample_embeddings, n=5
    )

    sync(segment, seq_ids[-1])
    assert segment.count() == 5

    delete_record = SubmitEmbeddingRecord(
        id=embeddings[0]["id"],
        embedding=None,
        encoding=None,
        metadata=None,
        operation=Operation.DELETE,
        collection_id=uuid.UUID(int=0),
    )
    assert isinstance(seq_ids, List)
    seq_ids.append(
        produce_fns(
            producer=producer,
            topic=topic,
            n=1,
            embeddings=(delete_record for _ in range(1)),
        )[1][0]
    )

    sync(segment, seq_ids[-1])

    # Assert that the record is gone using `count`
    assert segment.count() == 4

    # Assert that the record is gone using `get`
    assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
    results = segment.get_vectors()
    assert len(results) == 4
    # get_vectors returns results in arbitrary order
    results = sorted(results, key=lambda v: v["id"])
    for actual, expected in zip(results, embeddings[1:]):
        assert actual["id"] == expected["id"]
        assert approx_equal_vector(
            actual["embedding"], cast(Vector, expected["embedding"])
        )

    # Assert that the record is gone from KNN search
    vector = cast(Vector, embeddings[0]["embedding"])
    query = VectorQuery(
        vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
    )
    knn_results = segment.query_vectors(query)
    assert len(results) == 4
    assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])

    if isinstance(segment, PersistentLocalHnswSegment):
        if segment._allow_reset:
            assert os.path.exists(segment._get_storage_folder())
            segment.reset_state()
            assert not os.path.exists(segment._get_storage_folder())
        else:
            assert os.path.exists(segment._get_storage_folder())
            segment.reset_state()
            assert os.path.exists(segment._get_storage_folder())