Spaces:
Sleeping
Sleeping
File size: 20,927 Bytes
287a0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import pytest
from typing import Generator, List, Callable, Iterator, Type, cast
from chromadb.config import System, Settings
from chromadb.test.conftest import ProducerFn
from chromadb.types import (
SubmitEmbeddingRecord,
VectorQuery,
Operation,
ScalarEncoding,
Segment,
SegmentScope,
SeqId,
Vector,
)
from chromadb.ingest import Producer
from chromadb.segment import VectorReader
import uuid
import time
from chromadb.segment.impl.vector.local_hnsw import (
LocalHnswSegment,
)
from chromadb.segment.impl.vector.local_persistent_hnsw import (
PersistentLocalHnswSegment,
)
from chromadb.test.property.strategies import test_hnsw_config
from pytest import FixtureRequest
from itertools import count
import tempfile
import os
import shutil
def sqlite() -> Generator[System, None, None]:
"""Fixture generator for sqlite DB"""
save_path = tempfile.mkdtemp()
settings = Settings(
allow_reset=True,
is_persistent=False,
persist_directory=save_path,
)
system = System(settings)
system.start()
yield system
system.stop()
if os.path.exists(save_path):
shutil.rmtree(save_path)
def sqlite_persistent() -> Generator[System, None, None]:
"""Fixture generator for sqlite DB"""
save_path = tempfile.mkdtemp()
settings = Settings(
allow_reset=True,
is_persistent=True,
persist_directory=save_path,
)
system = System(settings)
system.start()
yield system
system.stop()
if os.path.exists(save_path):
shutil.rmtree(save_path)
# We will excercise in memory, persistent sqlite with both ephemeral and persistent hnsw.
# We technically never expose persitent sqlite with memory hnsw to users, but it's a valid
# configuration, so we test it here.
def system_fixtures() -> List[Callable[[], Generator[System, None, None]]]:
return [sqlite, sqlite_persistent]
@pytest.fixture(scope="module", params=system_fixtures())
def system(request: FixtureRequest) -> Generator[System, None, None]:
yield next(request.param())
@pytest.fixture(scope="function")
def sample_embeddings() -> Iterator[SubmitEmbeddingRecord]:
"""Generate a sequence of embeddings with the property that for each embedding
(other than the first and last), it's nearest neighbor is the previous in the
sequence, and it's second nearest neighbor is the subsequent"""
def create_record(i: int) -> SubmitEmbeddingRecord:
vector = [i**1.1, i**1.1]
record = SubmitEmbeddingRecord(
id=f"embedding_{i}",
embedding=vector,
encoding=ScalarEncoding.FLOAT32,
metadata=None,
operation=Operation.ADD,
collection_id=uuid.UUID(int=0),
)
return record
return (create_record(i) for i in count())
def vector_readers() -> List[Type[VectorReader]]:
return [LocalHnswSegment, PersistentLocalHnswSegment]
@pytest.fixture(scope="module", params=vector_readers())
def vector_reader(request: FixtureRequest) -> Generator[Type[VectorReader], None, None]:
yield request.param
def create_random_segment_definition() -> Segment:
return Segment(
id=uuid.uuid4(),
type="test_type",
scope=SegmentScope.VECTOR,
topic="persistent://test/test/test_topic_1",
collection=None,
metadata=test_hnsw_config,
)
def sync(segment: VectorReader, seq_id: SeqId) -> None:
# Try for up to 5 seconds, then throw a TimeoutError
start = time.time()
while time.time() - start < 5:
if segment.max_seqid() >= seq_id:
return
time.sleep(0.25)
raise TimeoutError(f"Timed out waiting for seq_id {seq_id}")
def test_insert_and_count(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
max_id = produce_fns(
producer=producer, topic=topic, n=3, embeddings=sample_embeddings
)[1][-1]
segment = vector_reader(system, segment_definition)
segment.start()
sync(segment, max_id)
assert segment.count() == 3
max_id = produce_fns(
producer=producer, topic=topic, n=3, embeddings=sample_embeddings
)[1][-1]
sync(segment, max_id)
assert segment.count() == 6
def approx_equal(a: float, b: float, epsilon: float = 0.0001) -> bool:
return abs(a - b) < epsilon
def approx_equal_vector(a: Vector, b: Vector, epsilon: float = 0.0001) -> bool:
return all(approx_equal(x, y, epsilon) for x, y in zip(a, b))
def test_get_vectors(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
embeddings, seq_ids = produce_fns(
producer=producer, topic=topic, embeddings=sample_embeddings, n=10
)
sync(segment, seq_ids[-1])
# Get all items
vectors = segment.get_vectors()
assert len(vectors) == len(embeddings)
vectors = sorted(vectors, key=lambda v: v["id"])
for actual, expected, seq_id in zip(vectors, embeddings, seq_ids):
assert actual["id"] == expected["id"]
assert approx_equal_vector(
actual["embedding"], cast(Vector, expected["embedding"])
)
assert actual["seq_id"] == seq_id
# Get selected IDs
ids = [e["id"] for e in embeddings[5:]]
vectors = segment.get_vectors(ids=ids)
assert len(vectors) == 5
vectors = sorted(vectors, key=lambda v: v["id"])
for actual, expected, seq_id in zip(vectors, embeddings[5:], seq_ids[5:]):
assert actual["id"] == expected["id"]
assert approx_equal_vector(
actual["embedding"], cast(Vector, expected["embedding"])
)
assert actual["seq_id"] == seq_id
def test_ann_query(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
embeddings, seq_ids = produce_fns(
producer=producer, topic=topic, embeddings=sample_embeddings, n=100
)
sync(segment, seq_ids[-1])
# Each item is its own nearest neighbor (one at a time)
for e in embeddings:
vector = cast(Vector, e["embedding"])
query = VectorQuery(
vectors=[vector],
k=1,
allowed_ids=None,
options=None,
include_embeddings=True,
)
results = segment.query_vectors(query)
assert len(results) == 1
assert len(results[0]) == 1
assert results[0][0]["id"] == e["id"]
assert results[0][0]["embedding"] is not None
assert approx_equal_vector(results[0][0]["embedding"], vector)
# Each item is its own nearest neighbor (all at once)
vectors = [cast(Vector, e["embedding"]) for e in embeddings]
query = VectorQuery(
vectors=vectors, k=1, allowed_ids=None, options=None, include_embeddings=False
)
results = segment.query_vectors(query)
assert len(results) == len(embeddings)
for r, e in zip(results, embeddings):
assert len(r) == 1
assert r[0]["id"] == e["id"]
# Each item's 3 nearest neighbors are itself and the item before and after
test_embeddings = embeddings[1:-1]
vectors = [cast(Vector, e["embedding"]) for e in test_embeddings]
query = VectorQuery(
vectors=vectors, k=3, allowed_ids=None, options=None, include_embeddings=False
)
results = segment.query_vectors(query)
assert len(results) == len(test_embeddings)
for r, e, i in zip(results, test_embeddings, range(1, len(test_embeddings))):
assert len(r) == 3
assert r[0]["id"] == embeddings[i]["id"]
assert r[1]["id"] == embeddings[i - 1]["id"]
assert r[2]["id"] == embeddings[i + 1]["id"]
def test_delete(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
embeddings, seq_ids = produce_fns(
producer=producer, topic=topic, embeddings=sample_embeddings, n=5
)
sync(segment, seq_ids[-1])
assert segment.count() == 5
delete_record = SubmitEmbeddingRecord(
id=embeddings[0]["id"],
embedding=None,
encoding=None,
metadata=None,
operation=Operation.DELETE,
collection_id=uuid.UUID(int=0),
)
assert isinstance(seq_ids, List)
seq_ids.append(
produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(delete_record for _ in range(1)),
)[1][0]
)
sync(segment, seq_ids[-1])
# Assert that the record is gone using `count`
assert segment.count() == 4
# Assert that the record is gone using `get`
assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
results = segment.get_vectors()
assert len(results) == 4
# get_vectors returns results in arbitrary order
results = sorted(results, key=lambda v: v["id"])
for actual, expected in zip(results, embeddings[1:]):
assert actual["id"] == expected["id"]
assert approx_equal_vector(
actual["embedding"], cast(Vector, expected["embedding"])
)
# Assert that the record is gone from KNN search
vector = cast(Vector, embeddings[0]["embedding"])
query = VectorQuery(
vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
)
knn_results = segment.query_vectors(query)
assert len(results) == 4
assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])
# Delete is idempotent
seq_ids.append(
produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(delete_record for _ in range(1)),
)[1][0]
)
sync(segment, seq_ids[-1])
assert segment.count() == 4
def _test_update(
producer: Producer,
topic: str,
segment: VectorReader,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
operation: Operation,
) -> None:
"""Tests the common code paths between update & upsert"""
embeddings = [next(sample_embeddings) for i in range(3)]
seq_ids: List[SeqId] = []
for e in embeddings:
seq_ids.append(producer.submit_embedding(topic, e))
sync(segment, seq_ids[-1])
assert segment.count() == 3
seq_ids.append(
producer.submit_embedding(
topic,
SubmitEmbeddingRecord(
id=embeddings[0]["id"],
embedding=[10.0, 10.0],
encoding=ScalarEncoding.FLOAT32,
metadata=None,
operation=operation,
collection_id=uuid.UUID(int=0),
),
)
)
sync(segment, seq_ids[-1])
# Test new data from get_vectors
assert segment.count() == 3
results = segment.get_vectors()
assert len(results) == 3
results = segment.get_vectors(ids=[embeddings[0]["id"]])
assert results[0]["embedding"] == [10.0, 10.0]
# Test querying at the old location
vector = cast(Vector, embeddings[0]["embedding"])
query = VectorQuery(
vectors=[vector], k=3, allowed_ids=None, options=None, include_embeddings=False
)
knn_results = segment.query_vectors(query)[0]
assert knn_results[0]["id"] == embeddings[1]["id"]
assert knn_results[1]["id"] == embeddings[2]["id"]
assert knn_results[2]["id"] == embeddings[0]["id"]
# Test querying at the new location
vector = [10.0, 10.0]
query = VectorQuery(
vectors=[vector], k=3, allowed_ids=None, options=None, include_embeddings=False
)
knn_results = segment.query_vectors(query)[0]
assert knn_results[0]["id"] == embeddings[0]["id"]
assert knn_results[1]["id"] == embeddings[2]["id"]
assert knn_results[2]["id"] == embeddings[1]["id"]
def test_update(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
_test_update(producer, topic, segment, sample_embeddings, Operation.UPDATE)
# test updating a nonexistent record
update_record = SubmitEmbeddingRecord(
id="no_such_record",
embedding=[10.0, 10.0],
encoding=ScalarEncoding.FLOAT32,
metadata=None,
operation=Operation.UPDATE,
collection_id=uuid.UUID(int=0),
)
seq_id = produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(update_record for _ in range(1)),
)[1][0]
sync(segment, seq_id)
assert segment.count() == 3
assert segment.get_vectors(ids=["no_such_record"]) == []
def test_upsert(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
_test_update(producer, topic, segment, sample_embeddings, Operation.UPSERT)
# test updating a nonexistent record
upsert_record = SubmitEmbeddingRecord(
id="no_such_record",
embedding=[42, 42],
encoding=ScalarEncoding.FLOAT32,
metadata=None,
operation=Operation.UPSERT,
collection_id=uuid.UUID(int=0),
)
seq_id = produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(upsert_record for _ in range(1)),
)[1][0]
sync(segment, seq_id)
assert segment.count() == 4
result = segment.get_vectors(ids=["no_such_record"])
assert len(result) == 1
assert approx_equal_vector(result[0]["embedding"], [42, 42])
def test_delete_without_add(
system: System,
vector_reader: Type[VectorReader],
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
assert segment.count() == 0
delete_record = SubmitEmbeddingRecord(
id="not_in_db",
embedding=None,
encoding=None,
metadata=None,
operation=Operation.DELETE,
collection_id=uuid.UUID(int=0),
)
try:
producer.submit_embedding(topic, delete_record)
except BaseException:
pytest.fail("Unexpected error. Deleting on an empty segment should not raise.")
def test_delete_with_local_segment_storage(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
embeddings, seq_ids = produce_fns(
producer=producer, topic=topic, embeddings=sample_embeddings, n=5
)
sync(segment, seq_ids[-1])
assert segment.count() == 5
delete_record = SubmitEmbeddingRecord(
id=embeddings[0]["id"],
embedding=None,
encoding=None,
metadata=None,
operation=Operation.DELETE,
collection_id=uuid.UUID(int=0),
)
assert isinstance(seq_ids, List)
seq_ids.append(
produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(delete_record for _ in range(1)),
)[1][0]
)
sync(segment, seq_ids[-1])
# Assert that the record is gone using `count`
assert segment.count() == 4
# Assert that the record is gone using `get`
assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
results = segment.get_vectors()
assert len(results) == 4
# get_vectors returns results in arbitrary order
results = sorted(results, key=lambda v: v["id"])
for actual, expected in zip(results, embeddings[1:]):
assert actual["id"] == expected["id"]
assert approx_equal_vector(
actual["embedding"], cast(Vector, expected["embedding"])
)
# Assert that the record is gone from KNN search
vector = cast(Vector, embeddings[0]["embedding"])
query = VectorQuery(
vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
)
knn_results = segment.query_vectors(query)
assert len(results) == 4
assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])
# Delete is idempotent
if isinstance(segment, PersistentLocalHnswSegment):
assert os.path.exists(segment._get_storage_folder())
segment.delete()
assert not os.path.exists(segment._get_storage_folder())
segment.delete() # should not raise
elif isinstance(segment, LocalHnswSegment):
with pytest.raises(NotImplementedError):
segment.delete()
def test_reset_state_ignored_for_allow_reset_false(
system: System,
sample_embeddings: Iterator[SubmitEmbeddingRecord],
vector_reader: Type[VectorReader],
produce_fns: ProducerFn,
) -> None:
producer = system.instance(Producer)
system.reset_state()
segment_definition = create_random_segment_definition()
topic = str(segment_definition["topic"])
segment = vector_reader(system, segment_definition)
segment.start()
embeddings, seq_ids = produce_fns(
producer=producer, topic=topic, embeddings=sample_embeddings, n=5
)
sync(segment, seq_ids[-1])
assert segment.count() == 5
delete_record = SubmitEmbeddingRecord(
id=embeddings[0]["id"],
embedding=None,
encoding=None,
metadata=None,
operation=Operation.DELETE,
collection_id=uuid.UUID(int=0),
)
assert isinstance(seq_ids, List)
seq_ids.append(
produce_fns(
producer=producer,
topic=topic,
n=1,
embeddings=(delete_record for _ in range(1)),
)[1][0]
)
sync(segment, seq_ids[-1])
# Assert that the record is gone using `count`
assert segment.count() == 4
# Assert that the record is gone using `get`
assert segment.get_vectors(ids=[embeddings[0]["id"]]) == []
results = segment.get_vectors()
assert len(results) == 4
# get_vectors returns results in arbitrary order
results = sorted(results, key=lambda v: v["id"])
for actual, expected in zip(results, embeddings[1:]):
assert actual["id"] == expected["id"]
assert approx_equal_vector(
actual["embedding"], cast(Vector, expected["embedding"])
)
# Assert that the record is gone from KNN search
vector = cast(Vector, embeddings[0]["embedding"])
query = VectorQuery(
vectors=[vector], k=10, allowed_ids=None, options=None, include_embeddings=False
)
knn_results = segment.query_vectors(query)
assert len(results) == 4
assert set(r["id"] for r in knn_results[0]) == set(e["id"] for e in embeddings[1:])
if isinstance(segment, PersistentLocalHnswSegment):
if segment._allow_reset:
assert os.path.exists(segment._get_storage_folder())
segment.reset_state()
assert not os.path.exists(segment._get_storage_folder())
else:
assert os.path.exists(segment._get_storage_folder())
segment.reset_state()
assert os.path.exists(segment._get_storage_folder())
|