Spaces:
Sleeping
Sleeping
File size: 13,622 Bytes
287a0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import asyncio
import os
import shutil
import tempfile
import pytest
from itertools import count
from typing import (
Generator,
List,
Callable,
Optional,
Dict,
Union,
Iterator,
Sequence,
Tuple,
)
from chromadb.ingest import Producer, Consumer
from chromadb.db.impl.sqlite import SqliteDB
from chromadb.ingest.impl.utils import create_topic_name
from chromadb.test.conftest import ProducerFn
from chromadb.types import (
SubmitEmbeddingRecord,
Operation,
EmbeddingRecord,
ScalarEncoding,
)
from chromadb.config import System, Settings
from pytest import FixtureRequest, approx
from asyncio import Event, wait_for, TimeoutError
import uuid
def sqlite() -> Generator[Tuple[Producer, Consumer], None, None]:
"""Fixture generator for sqlite Producer + Consumer"""
system = System(Settings(allow_reset=True))
db = system.require(SqliteDB)
system.start()
yield db, db
system.stop()
def sqlite_persistent() -> Generator[Tuple[Producer, Consumer], None, None]:
"""Fixture generator for sqlite_persistent Producer + Consumer"""
save_path = tempfile.mkdtemp()
system = System(
Settings(allow_reset=True, is_persistent=True, persist_directory=save_path)
)
db = system.require(SqliteDB)
system.start()
yield db, db
system.stop()
if os.path.exists(save_path):
shutil.rmtree(save_path)
def pulsar() -> Generator[Tuple[Producer, Consumer], None, None]:
"""Fixture generator for pulsar Producer + Consumer. This fixture requires a running
pulsar cluster. You can use bin/cluster-test.sh to start a standalone pulsar and run this test.
Assumes pulsar_broker_url etc is set from the environment variables like PULSAR_BROKER_URL.
"""
system = System(
Settings(
allow_reset=True,
chroma_producer_impl="chromadb.ingest.impl.pulsar.PulsarProducer",
chroma_consumer_impl="chromadb.ingest.impl.pulsar.PulsarConsumer",
)
)
producer = system.require(Producer)
consumer = system.require(Consumer)
system.start()
yield producer, consumer
system.stop()
def fixtures() -> List[Callable[[], Generator[Tuple[Producer, Consumer], None, None]]]:
fixtures = [sqlite, sqlite_persistent]
if "CHROMA_CLUSTER_TEST_ONLY" in os.environ:
fixtures = [pulsar]
return fixtures
@pytest.fixture(scope="module", params=fixtures())
def producer_consumer(
request: FixtureRequest,
) -> Generator[Tuple[Producer, Consumer], None, None]:
yield next(request.param())
@pytest.fixture(scope="module")
def sample_embeddings() -> Iterator[SubmitEmbeddingRecord]:
def create_record(i: int) -> SubmitEmbeddingRecord:
vector = [i + i * 0.1, i + 1 + i * 0.1]
metadata: Optional[Dict[str, Union[str, int, float]]]
if i % 2 == 0:
metadata = None
else:
metadata = {"str_key": f"value_{i}", "int_key": i, "float_key": i + i * 0.1}
record = SubmitEmbeddingRecord(
id=f"embedding_{i}",
embedding=vector,
encoding=ScalarEncoding.FLOAT32,
metadata=metadata,
operation=Operation.ADD,
collection_id=uuid.uuid4(),
)
return record
return (create_record(i) for i in count())
class CapturingConsumeFn:
embeddings: List[EmbeddingRecord]
waiters: List[Tuple[int, Event]]
def __init__(self) -> None:
"""A function that captures embeddings and allows you to wait for a certain
number of embeddings to be available. It must be constructed in the thread with
the main event loop
"""
self.embeddings = []
self.waiters = []
self._loop = asyncio.get_event_loop()
def __call__(self, embeddings: Sequence[EmbeddingRecord]) -> None:
self.embeddings.extend(embeddings)
for n, event in self.waiters:
if len(self.embeddings) >= n:
# event.set() is not thread safe, so we need to call it in the main event loop
self._loop.call_soon_threadsafe(event.set)
async def get(self, n: int, timeout_secs: int = 10) -> Sequence[EmbeddingRecord]:
"Wait until at least N embeddings are available, then return all embeddings"
if len(self.embeddings) >= n:
return self.embeddings[:n]
else:
event = Event()
self.waiters.append((n, event))
# timeout so we don't hang forever on failure
await wait_for(event.wait(), timeout_secs)
return self.embeddings[:n]
def assert_approx_equal(a: Sequence[float], b: Sequence[float]) -> None:
for i, j in zip(a, b):
assert approx(i) == approx(j)
def assert_records_match(
inserted_records: Sequence[SubmitEmbeddingRecord],
consumed_records: Sequence[EmbeddingRecord],
) -> None:
"""Given a list of inserted and consumed records, make sure they match"""
assert len(consumed_records) == len(inserted_records)
for inserted, consumed in zip(inserted_records, consumed_records):
assert inserted["id"] == consumed["id"]
assert inserted["operation"] == consumed["operation"]
assert inserted["encoding"] == consumed["encoding"]
assert inserted["metadata"] == consumed["metadata"]
if inserted["embedding"] is not None:
assert consumed["embedding"] is not None
assert_approx_equal(inserted["embedding"], consumed["embedding"])
def full_topic_name(topic_name: str) -> str:
return create_topic_name("default", "default", topic_name)
@pytest.mark.asyncio
async def test_backfill(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
produce_fns: ProducerFn,
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
producer.create_topic(topic_name)
embeddings = produce_fns(producer, topic_name, sample_embeddings, 3)[0]
consume_fn = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn, start=consumer.min_seqid())
recieved = await consume_fn.get(3)
assert_records_match(embeddings, recieved)
@pytest.mark.asyncio
async def test_notifications(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
producer.create_topic(topic_name)
embeddings: List[SubmitEmbeddingRecord] = []
consume_fn = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn, start=consumer.min_seqid())
for i in range(10):
e = next(sample_embeddings)
embeddings.append(e)
producer.submit_embedding(topic_name, e)
received = await consume_fn.get(i + 1)
assert_records_match(embeddings, received)
@pytest.mark.asyncio
async def test_multiple_topics(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name_1 = full_topic_name("test_topic_1")
topic_name_2 = full_topic_name("test_topic_2")
producer.create_topic(topic_name_1)
producer.create_topic(topic_name_2)
embeddings_1: List[SubmitEmbeddingRecord] = []
embeddings_2: List[SubmitEmbeddingRecord] = []
consume_fn_1 = CapturingConsumeFn()
consume_fn_2 = CapturingConsumeFn()
consumer.subscribe(topic_name_1, consume_fn_1, start=consumer.min_seqid())
consumer.subscribe(topic_name_2, consume_fn_2, start=consumer.min_seqid())
for i in range(10):
e_1 = next(sample_embeddings)
embeddings_1.append(e_1)
producer.submit_embedding(topic_name_1, e_1)
results_2 = await consume_fn_1.get(i + 1)
assert_records_match(embeddings_1, results_2)
e_2 = next(sample_embeddings)
embeddings_2.append(e_2)
producer.submit_embedding(topic_name_2, e_2)
results_2 = await consume_fn_2.get(i + 1)
assert_records_match(embeddings_2, results_2)
@pytest.mark.asyncio
async def test_start_seq_id(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
produce_fns: ProducerFn,
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
producer.create_topic(topic_name)
consume_fn_1 = CapturingConsumeFn()
consume_fn_2 = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn_1, start=consumer.min_seqid())
embeddings = produce_fns(producer, topic_name, sample_embeddings, 5)[0]
results_1 = await consume_fn_1.get(5)
assert_records_match(embeddings, results_1)
start = consume_fn_1.embeddings[-1]["seq_id"]
consumer.subscribe(topic_name, consume_fn_2, start=start)
second_embeddings = produce_fns(producer, topic_name, sample_embeddings, 5)[0]
assert isinstance(embeddings, list)
embeddings.extend(second_embeddings)
results_2 = await consume_fn_2.get(5)
assert_records_match(embeddings[-5:], results_2)
@pytest.mark.asyncio
async def test_end_seq_id(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
produce_fns: ProducerFn,
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
producer.create_topic(topic_name)
consume_fn_1 = CapturingConsumeFn()
consume_fn_2 = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn_1, start=consumer.min_seqid())
embeddings = produce_fns(producer, topic_name, sample_embeddings, 10)[0]
results_1 = await consume_fn_1.get(10)
assert_records_match(embeddings, results_1)
end = consume_fn_1.embeddings[-5]["seq_id"]
consumer.subscribe(topic_name, consume_fn_2, start=consumer.min_seqid(), end=end)
results_2 = await consume_fn_2.get(6)
assert_records_match(embeddings[:6], results_2)
# Should never produce a 7th
with pytest.raises(TimeoutError):
_ = await wait_for(consume_fn_2.get(7), timeout=1)
@pytest.mark.asyncio
async def test_submit_batch(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
embeddings = [next(sample_embeddings) for _ in range(100)]
producer.create_topic(topic_name)
producer.submit_embeddings(topic_name, embeddings=embeddings)
consume_fn = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn, start=consumer.min_seqid())
recieved = await consume_fn.get(100)
assert_records_match(embeddings, recieved)
@pytest.mark.asyncio
async def test_multiple_topics_batch(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
produce_fns: ProducerFn,
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
N_TOPICS = 2
consume_fns = [CapturingConsumeFn() for _ in range(N_TOPICS)]
for i in range(N_TOPICS):
producer.create_topic(full_topic_name(f"test_topic_{i}"))
consumer.subscribe(
full_topic_name(f"test_topic_{i}"),
consume_fns[i],
start=consumer.min_seqid(),
)
embeddings_n: List[List[SubmitEmbeddingRecord]] = [[] for _ in range(N_TOPICS)]
PRODUCE_BATCH_SIZE = 10
N_TO_PRODUCE = 100
total_produced = 0
for i in range(N_TO_PRODUCE // PRODUCE_BATCH_SIZE):
for n in range(N_TOPICS):
embeddings_n[n].extend(
produce_fns(
producer,
full_topic_name(f"test_topic_{n}"),
sample_embeddings,
PRODUCE_BATCH_SIZE,
)[0]
)
recieved = await consume_fns[n].get(total_produced + PRODUCE_BATCH_SIZE)
assert_records_match(embeddings_n[n], recieved)
total_produced += PRODUCE_BATCH_SIZE
@pytest.mark.asyncio
async def test_max_batch_size(
producer_consumer: Tuple[Producer, Consumer],
sample_embeddings: Iterator[SubmitEmbeddingRecord],
) -> None:
producer, consumer = producer_consumer
producer.reset_state()
consumer.reset_state()
topic_name = full_topic_name("test_topic")
max_batch_size = producer.max_batch_size
assert max_batch_size > 0
# Make sure that we can produce a batch of size max_batch_size
embeddings = [next(sample_embeddings) for _ in range(max_batch_size)]
consume_fn = CapturingConsumeFn()
consumer.subscribe(topic_name, consume_fn, start=consumer.min_seqid())
producer.submit_embeddings(topic_name, embeddings=embeddings)
received = await consume_fn.get(max_batch_size, timeout_secs=120)
assert_records_match(embeddings, received)
embeddings = [next(sample_embeddings) for _ in range(max_batch_size + 1)]
# Make sure that we can't produce a batch of size > max_batch_size
with pytest.raises(ValueError) as e:
producer.submit_embeddings(topic_name, embeddings=embeddings)
assert "Cannot submit more than" in str(e.value)
|