Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,9 +23,12 @@ def load_models_data():
|
|
| 23 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
| 24 |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
|
| 25 |
if 'params' in df.columns:
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
else:
|
| 28 |
-
|
|
|
|
| 29 |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
| 30 |
print(msg)
|
| 31 |
return df, True, msg
|
|
@@ -40,9 +43,15 @@ def get_param_range_values(param_range_labels):
|
|
| 40 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
| 41 |
return min_val, max_val
|
| 42 |
|
| 43 |
-
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
|
| 44 |
if df is None or df.empty: return pd.DataFrame()
|
| 45 |
filtered_df = df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
| 47 |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
|
| 48 |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
|
|
@@ -51,9 +60,12 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
|
|
| 51 |
if param_range:
|
| 52 |
min_params, max_params = get_param_range_values(param_range)
|
| 53 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
|
|
|
|
|
|
| 54 |
if not is_default_range and 'params' in filtered_df.columns:
|
| 55 |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
|
| 56 |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
|
|
|
|
| 57 |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
|
| 58 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
| 59 |
if filtered_df.empty: return pd.DataFrame()
|
|
@@ -82,7 +94,6 @@ custom_css = """
|
|
| 82 |
#param-slider-wrapper div[data-testid="range-slider"] > span {
|
| 83 |
display: none !important;
|
| 84 |
}
|
| 85 |
-
|
| 86 |
/*
|
| 87 |
THIS IS THE KEY FIX:
|
| 88 |
We target all the individual component containers (divs with class .block)
|
|
@@ -129,6 +140,8 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 129 |
elem_id="param-slider-wrapper"
|
| 130 |
)
|
| 131 |
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# This section remains un-grouped
|
| 134 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
|
@@ -166,8 +179,11 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 166 |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
| 167 |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
|
| 168 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
else:
|
| 172 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
| 173 |
except Exception as e:
|
|
@@ -178,7 +194,6 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 178 |
print(f"Critical error in load_and_generate_initial_plot: {e}")
|
| 179 |
|
| 180 |
# --- Part 2: Generate Initial Plot ---
|
| 181 |
-
# We call the existing plot generation function with the default values from the UI
|
| 182 |
progress(0.6, desc="Generating initial plot...")
|
| 183 |
# Get default values directly from the UI component definitions
|
| 184 |
default_metric = "downloads"
|
|
@@ -188,18 +203,20 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 188 |
default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
|
| 189 |
default_k = 25
|
| 190 |
default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
|
|
|
|
|
|
|
| 191 |
|
| 192 |
# Reuse the existing controller function for plotting
|
| 193 |
initial_plot, initial_status = ui_generate_plot_controller(
|
| 194 |
default_metric, default_filter_type, default_tag, default_pipeline,
|
| 195 |
-
default_param_indices, default_k, default_skip_orgs, current_df, progress
|
| 196 |
)
|
| 197 |
|
| 198 |
# Return all the necessary updates for the UI
|
| 199 |
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
|
| 200 |
|
| 201 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 202 |
-
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
| 203 |
if df_current_models is None or df_current_models.empty:
|
| 204 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
|
| 205 |
|
|
@@ -212,7 +229,16 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 212 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
| 213 |
param_labels_for_filtering = [min_label, max_label]
|
| 214 |
|
| 215 |
-
treemap_df = make_treemap_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
progress(0.7, desc="Generating plot...")
|
| 218 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
|
@@ -237,7 +263,7 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 237 |
generate_plot_button.click(
|
| 238 |
fn=ui_generate_plot_controller,
|
| 239 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
| 240 |
-
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
|
| 241 |
outputs=[plot_output, status_message_md]
|
| 242 |
)
|
| 243 |
|
|
|
|
| 23 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
| 24 |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
|
| 25 |
if 'params' in df.columns:
|
| 26 |
+
# IMPORTANT CHANGE: Fill NaN/coerce errors with -1 to signify unknown size
|
| 27 |
+
# This aligns with the utility function's return of -1.0 for unknown sizes.
|
| 28 |
+
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(-1)
|
| 29 |
else:
|
| 30 |
+
# If 'params' column doesn't exist, assume all are unknown
|
| 31 |
+
df['params'] = -1
|
| 32 |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
| 33 |
print(msg)
|
| 34 |
return df, True, msg
|
|
|
|
| 43 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
| 44 |
return min_val, max_val
|
| 45 |
|
| 46 |
+
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True):
|
| 47 |
if df is None or df.empty: return pd.DataFrame()
|
| 48 |
filtered_df = df.copy()
|
| 49 |
+
|
| 50 |
+
# New: Filter based on unknown parameter size
|
| 51 |
+
# If include_unknown_param_size is False, exclude models where params is -1 (unknown)
|
| 52 |
+
if not include_unknown_param_size and 'params' in filtered_df.columns:
|
| 53 |
+
filtered_df = filtered_df[filtered_df['params'] != -1]
|
| 54 |
+
|
| 55 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
| 56 |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
|
| 57 |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
|
|
|
|
| 60 |
if param_range:
|
| 61 |
min_params, max_params = get_param_range_values(param_range)
|
| 62 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
| 63 |
+
# Apply parameter range filter only if it's not the default (all range) AND params column exists
|
| 64 |
+
# This filter will naturally exclude -1 if the min_params is >= 0, as it should.
|
| 65 |
if not is_default_range and 'params' in filtered_df.columns:
|
| 66 |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
|
| 67 |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
|
| 68 |
+
|
| 69 |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
|
| 70 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
| 71 |
if filtered_df.empty: return pd.DataFrame()
|
|
|
|
| 94 |
#param-slider-wrapper div[data-testid="range-slider"] > span {
|
| 95 |
display: none !important;
|
| 96 |
}
|
|
|
|
| 97 |
/*
|
| 98 |
THIS IS THE KEY FIX:
|
| 99 |
We target all the individual component containers (divs with class .block)
|
|
|
|
| 140 |
elem_id="param-slider-wrapper"
|
| 141 |
)
|
| 142 |
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
|
| 143 |
+
# New: Checkbox for including unknown parameter sizes
|
| 144 |
+
include_unknown_params_checkbox = gr.Checkbox(label="Include models with unknown parameter size", value=True)
|
| 145 |
|
| 146 |
# This section remains un-grouped
|
| 147 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
|
|
|
| 179 |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
| 180 |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
|
| 181 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
|
| 182 |
+
# Count models where params is not -1 (known size)
|
| 183 |
+
param_count = (current_df['params'] != -1).sum() if 'params' in current_df.columns else 0
|
| 184 |
+
unknown_param_count = (current_df['params'] == -1).sum() if 'params' in current_df.columns else 0
|
| 185 |
+
|
| 186 |
+
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with known parameter counts: {param_count:,}\n- Models with unknown parameter counts: {unknown_param_count:,}\n- Data as of: {date_display}\n"
|
| 187 |
else:
|
| 188 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
| 189 |
except Exception as e:
|
|
|
|
| 194 |
print(f"Critical error in load_and_generate_initial_plot: {e}")
|
| 195 |
|
| 196 |
# --- Part 2: Generate Initial Plot ---
|
|
|
|
| 197 |
progress(0.6, desc="Generating initial plot...")
|
| 198 |
# Get default values directly from the UI component definitions
|
| 199 |
default_metric = "downloads"
|
|
|
|
| 203 |
default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
|
| 204 |
default_k = 25
|
| 205 |
default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
|
| 206 |
+
# New default: include unknown params initially (matches checkbox default)
|
| 207 |
+
default_include_unknown_params = True
|
| 208 |
|
| 209 |
# Reuse the existing controller function for plotting
|
| 210 |
initial_plot, initial_status = ui_generate_plot_controller(
|
| 211 |
default_metric, default_filter_type, default_tag, default_pipeline,
|
| 212 |
+
default_param_indices, default_k, default_skip_orgs, default_include_unknown_params, current_df, progress
|
| 213 |
)
|
| 214 |
|
| 215 |
# Return all the necessary updates for the UI
|
| 216 |
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
|
| 217 |
|
| 218 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 219 |
+
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag, df_current_models, progress=gr.Progress()):
|
| 220 |
if df_current_models is None or df_current_models.empty:
|
| 221 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
|
| 222 |
|
|
|
|
| 229 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
| 230 |
param_labels_for_filtering = [min_label, max_label]
|
| 231 |
|
| 232 |
+
treemap_df = make_treemap_data(
|
| 233 |
+
df_current_models,
|
| 234 |
+
metric_choice,
|
| 235 |
+
k_orgs,
|
| 236 |
+
tag_to_use,
|
| 237 |
+
pipeline_to_use,
|
| 238 |
+
param_labels_for_filtering,
|
| 239 |
+
orgs_to_skip,
|
| 240 |
+
include_unknown_param_size_flag # Pass the new flag
|
| 241 |
+
)
|
| 242 |
|
| 243 |
progress(0.7, desc="Generating plot...")
|
| 244 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
|
|
|
| 263 |
generate_plot_button.click(
|
| 264 |
fn=ui_generate_plot_controller,
|
| 265 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
| 266 |
+
param_range_slider, top_k_dropdown, skip_orgs_textbox, include_unknown_params_checkbox, models_data_state], # Add checkbox to inputs
|
| 267 |
outputs=[plot_output, status_message_md]
|
| 268 |
)
|
| 269 |
|