Spaces:
Sleeping
Sleeping
from fastapi import APIRouter, Query | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import numpy as np | |
import random | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
models_descriptions = { | |
"baseline": "random baseline", # Baseline | |
"distilbert_frugalai": "distilbert frugal ai", | |
"deberta_frugalai": "deberta frugal ai", | |
"modernbert_frugalai": "modernbert frugal ai", | |
"distilroberta_frugalai": "distilroberta frugal ai" | |
} | |
def baseline_model(dataset_length: int): | |
# Make random predictions (placeholder for actual model inference) | |
predictions = [random.randint(0, 7) for _ in range(dataset_length)] | |
return predictions | |
class TextDataset(Dataset): | |
def __init__(self, texts, tokenizer, max_length=512): | |
self.texts = texts | |
self.tokenized_texts = tokenizer( | |
texts, | |
truncation=True, | |
padding=True, | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
def __getitem__(self, idx): | |
item = {key: val[idx] for key, val in self.tokenized_texts.items()} | |
return item | |
def __len__(self) -> int: | |
return len(self.texts) | |
def bert_classifier(test_dataset: dict, model: str): | |
print("Starting BERT model run") | |
texts = test_dataset["quote"] | |
model_repo = f"evgeniiarazum/{model}" | |
tokenizer = AutoTokenizer.from_pretrained(model_repo) | |
if model in ["distilbert_frugalai", "deberta_frugalai", "modernbert_frugalai", "distilroberta_frugalai"]: | |
model = AutoModelForSequenceClassification.from_pretrained(model_repo) | |
else: | |
raise(ValueError) | |
# Use CUDA if available | |
device, _, _ = get_backend() | |
model = model.to(device) | |
# Prepare dataset | |
dataset = TextDataset(texts, tokenizer=tokenizer) | |
dataloader = DataLoader(dataset, batch_size=32, shuffle=False) | |
model.eval() | |
with torch.no_grad(): | |
predictions = np.array([]) | |
for batch in dataloader: | |
test_input_ids = batch["input_ids"].to(device) | |
test_attention_mask = batch["attention_mask"].to(device) | |
outputs = model(test_input_ids, test_attention_mask) | |
p = torch.argmax(outputs.logits, dim=1) | |
predictions = np.append(predictions, p.cpu().numpy()) | |
print("Finished BERT model run") | |
return predictions | |
async def evaluate_text(request: TextEvaluationRequest, | |
model: str = "distilbert_frugalai"): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
if model == "baseline": | |
predictions = baseline_model(len(true_labels)) | |
elif 'bert' in model: | |
predictions = bert_classifier(test_dataset, model) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": models_descriptions[model], | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |