evelyn / FastChat /fastchat /serve /gradio_block_arena_vision_anony.py
evelyn-lo's picture
Upload folder using huggingface_hub
37c870e verified
"""
Chatbot Arena (battle) tab.
Users chat with two anonymous models.
"""
import json
import time
import gradio as gr
import numpy as np
from fastchat.constants import (
TEXT_MODERATION_MSG,
IMAGE_MODERATION_MSG,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
SLOW_MODEL_MSG,
BLIND_MODE_INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
)
from fastchat.model.model_adapter import get_conversation_template
from fastchat.serve.gradio_block_arena_named import flash_buttons
from fastchat.serve.gradio_web_server import (
State,
bot_response,
get_conv_log_filename,
no_change_btn,
enable_btn,
disable_btn,
invisible_btn,
acknowledgment_md,
get_ip,
get_model_description_md,
disable_text,
enable_text,
)
from fastchat.serve.gradio_block_arena_anony import (
flash_buttons,
vote_last_response,
leftvote_last_response,
rightvote_last_response,
tievote_last_response,
bothbad_vote_last_response,
regenerate,
clear_history,
share_click,
add_text,
bot_response_multi,
set_global_vars_anony,
load_demo_side_by_side_anony,
get_sample_weight,
get_battle_pair,
SAMPLING_WEIGHTS,
BATTLE_TARGETS,
SAMPLING_BOOST_MODELS,
OUTAGE_MODELS,
)
from fastchat.serve.gradio_block_arena_vision import (
set_invisible_image,
set_visible_image,
add_image,
moderate_input,
enable_multimodal,
_prepare_text_with_image,
convert_images_to_conversation_format,
invisible_text,
visible_text,
disable_multimodal,
)
from fastchat.serve.remote_logger import get_remote_logger
from fastchat.utils import (
build_logger,
moderation_filter,
image_moderation_filter,
)
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log")
num_sides = 2
enable_moderation = False
anony_names = ["", ""]
text_models = []
vl_models = []
# TODO(chris): fix sampling weights
VISION_SAMPLING_WEIGHTS = {
"gpt-4o-2024-05-13": 4,
"gpt-4-turbo-2024-04-09": 4,
"claude-3-haiku-20240307": 4,
"claude-3-sonnet-20240229": 4,
"claude-3-5-sonnet-20240620": 4,
"claude-3-opus-20240229": 4,
"gemini-1.5-flash-api-0514": 4,
"gemini-1.5-pro-api-0514": 4,
"llava-v1.6-34b": 4,
"reka-core-20240501": 4,
"reka-flash-preview-20240611": 4,
}
# TODO(chris): Find battle targets that make sense
VISION_BATTLE_TARGETS = {}
# TODO(chris): Fill out models that require sampling boost
VISION_SAMPLING_BOOST_MODELS = []
# outage models won't be sampled.
VISION_OUTAGE_MODELS = []
def get_vqa_sample():
random_sample = np.random.choice(vqa_samples)
question, path = random_sample["question"], random_sample["path"]
res = {"text": "", "files": [path]}
return (res, path)
def load_demo_side_by_side_vision_anony(all_text_models, all_vl_models, url_params):
global text_models, vl_models
text_models = all_text_models
vl_models = all_vl_models
states = (None,) * num_sides
selector_updates = (
gr.Markdown(visible=True),
gr.Markdown(visible=True),
)
return states + selector_updates
def clear_history_example(request: gr.Request):
logger.info(f"clear_history_example (anony). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ anony_names
+ [enable_multimodal, invisible_text]
+ [invisible_btn] * 4
+ [disable_btn] * 2
+ [enable_btn]
)
def vote_last_response(states, vote_type, model_selectors, request: gr.Request):
filename = get_conv_log_filename(states[0].is_vision, states[0].has_csam_image)
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"models": [x for x in model_selectors],
"states": [x.dict() for x in states],
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
gr.Info(
"๐ŸŽ‰ Thanks for voting! Your vote shapes the leaderboard, please vote RESPONSIBLY."
)
if ":" not in model_selectors[0]:
for i in range(5):
names = (
"### Model A: " + states[0].model_name,
"### Model B: " + states[1].model_name,
)
yield names + (disable_text,) + (disable_btn,) * 4
time.sleep(0.1)
else:
names = (
"### Model A: " + states[0].model_name,
"### Model B: " + states[1].model_name,
)
yield names + (disable_text,) + (disable_btn,) * 4
def leftvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"leftvote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "leftvote", [model_selector0, model_selector1], request
):
yield x
def rightvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"rightvote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "rightvote", [model_selector0, model_selector1], request
):
yield x
def tievote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"tievote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "tievote", [model_selector0, model_selector1], request
):
yield x
def bothbad_vote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"bothbad_vote (anony). ip: {get_ip(request)}")
for x in vote_last_response(
[state0, state1], "bothbad_vote", [model_selector0, model_selector1], request
):
yield x
def regenerate(state0, state1, request: gr.Request):
logger.info(f"regenerate (anony). ip: {get_ip(request)}")
states = [state0, state1]
if state0.regen_support and state1.regen_support:
for i in range(num_sides):
states[i].conv.update_last_message(None)
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None]
+ [disable_btn] * 6
)
states[0].skip_next = True
states[1].skip_next = True
return (
states + [x.to_gradio_chatbot() for x in states] + [None] + [no_change_btn] * 6
)
def clear_history(request: gr.Request):
logger.info(f"clear_history (anony). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ anony_names
+ [enable_multimodal, invisible_text]
+ [invisible_btn] * 4
+ [disable_btn] * 2
+ [enable_btn]
+ [""]
)
def add_text(
state0, state1, model_selector0, model_selector1, chat_input, request: gr.Request
):
if isinstance(chat_input, dict):
text, images = chat_input["text"], chat_input["files"]
else:
text = chat_input
images = []
ip = get_ip(request)
logger.info(f"add_text (anony). ip: {ip}. len: {len(text)}")
states = [state0, state1]
model_selectors = [model_selector0, model_selector1]
# Init states if necessary
if states[0] is None:
assert states[1] is None
if len(images) > 0:
model_left, model_right = get_battle_pair(
vl_models,
VISION_BATTLE_TARGETS,
VISION_OUTAGE_MODELS,
VISION_SAMPLING_WEIGHTS,
VISION_SAMPLING_BOOST_MODELS,
)
states = [
State(model_left, is_vision=True),
State(model_right, is_vision=True),
]
else:
model_left, model_right = get_battle_pair(
text_models,
BATTLE_TARGETS,
OUTAGE_MODELS,
SAMPLING_WEIGHTS,
SAMPLING_BOOST_MODELS,
)
states = [
State(model_left, is_vision=False),
State(model_right, is_vision=False),
]
if len(text) <= 0:
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None, ""]
+ [
no_change_btn,
]
* 7
+ [""]
)
model_list = [states[i].model_name for i in range(num_sides)]
images = convert_images_to_conversation_format(images)
text, image_flagged, csam_flag = moderate_input(
state0, text, text, model_list, images, ip
)
conv = states[0].conv
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {get_ip(request)}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [{"text": CONVERSATION_LIMIT_MSG}, ""]
+ [
no_change_btn,
]
* 7
+ [""]
)
if image_flagged:
logger.info(f"image flagged. ip: {ip}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [
{
"text": IMAGE_MODERATION_MSG
+ " PLEASE CLICK ๐ŸŽฒ NEW ROUND TO START A NEW CONVERSATION."
},
"",
]
+ [no_change_btn] * 7
+ [""]
)
text = text[:BLIND_MODE_INPUT_CHAR_LEN_LIMIT] # Hard cut-off
for i in range(num_sides):
post_processed_text = _prepare_text_with_image(
states[i], text, images, csam_flag=csam_flag
)
states[i].conv.append_message(states[i].conv.roles[0], post_processed_text)
states[i].conv.append_message(states[i].conv.roles[1], None)
states[i].skip_next = False
hint_msg = ""
for i in range(num_sides):
if "deluxe" in states[i].model_name:
hint_msg = SLOW_MODEL_MSG
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [disable_multimodal, visible_text]
+ [
disable_btn,
]
* 7
+ [hint_msg]
)
def build_side_by_side_vision_ui_anony(text_models, vl_models, random_questions=None):
notice_markdown = """
# โš”๏ธ LMSYS Chatbot Arena (Multimodal): Benchmarking LLMs and VLMs in the Wild
[Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2403.04132) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | [Kaggle Competition](https://www.kaggle.com/competitions/lmsys-chatbot-arena)
## ๐Ÿ“œ Rules
- Ask any question to two anonymous models (e.g., ChatGPT, Gemini, Claude, Llama) and vote for the better one!
- You can continue chatting until you identify a winner.
- Vote won't be counted if model identity is revealed during conversation.
- **NEW** Image Support: <span style='color: #DE3163; font-weight: bold'>Upload an image</span> on your first turn to unlock the multimodal arena! Images should be less than 15MB.
## ๐Ÿ† Chatbot Arena [Leaderboard](https://leaderboard.lmsys.org)
- We've collected **1,000,000+** human votes to compute an LLM Elo leaderboard for 100+ models. Find out who is the ๐Ÿฅ‡LLM Champion [here](https://leaderboard.lmsys.org)!
## ๐Ÿ‘‡ Chat now!
"""
states = [gr.State() for _ in range(num_sides)]
model_selectors = [None] * num_sides
chatbots = [None] * num_sides
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Row():
with gr.Column(scale=2, visible=False) as image_column:
imagebox = gr.Image(
type="pil",
show_label=False,
interactive=False,
)
with gr.Column(scale=5):
with gr.Group(elem_id="share-region-anony"):
with gr.Accordion(
f"๐Ÿ” Expand to see the descriptions of {len(text_models) + len(vl_models)} models",
open=False,
):
model_description_md = get_model_description_md(
text_models + vl_models
)
gr.Markdown(
model_description_md, elem_id="model_description_markdown"
)
with gr.Row():
for i in range(num_sides):
label = "Model A" if i == 0 else "Model B"
with gr.Column():
chatbots[i] = gr.Chatbot(
label=label,
elem_id="chatbot",
height=650,
show_copy_button=True,
)
with gr.Row():
for i in range(num_sides):
with gr.Column():
model_selectors[i] = gr.Markdown(
anony_names[i], elem_id="model_selector_md"
)
with gr.Row():
slow_warning = gr.Markdown("", elem_id="notice_markdown")
with gr.Row():
leftvote_btn = gr.Button(
value="๐Ÿ‘ˆ A is better", visible=False, interactive=False
)
rightvote_btn = gr.Button(
value="๐Ÿ‘‰ B is better", visible=False, interactive=False
)
tie_btn = gr.Button(value="๐Ÿค Tie", visible=False, interactive=False)
bothbad_btn = gr.Button(
value="๐Ÿ‘Ž Both are bad", visible=False, interactive=False
)
with gr.Row():
textbox = gr.Textbox(
show_label=False,
placeholder="๐Ÿ‘‰ Enter your prompt and press ENTER",
elem_id="input_box",
visible=False,
)
multimodal_textbox = gr.MultimodalTextbox(
file_types=["image"],
show_label=False,
container=True,
placeholder="Enter your prompt or add image here",
elem_id="input_box",
)
# send_btn = gr.Button(value="Send", variant="primary", scale=0)
with gr.Row() as button_row:
if random_questions:
global vqa_samples
with open(random_questions, "r") as f:
vqa_samples = json.load(f)
random_btn = gr.Button(value="๐Ÿ”ฎ Random Image", interactive=True)
clear_btn = gr.Button(value="๐ŸŽฒ New Round", interactive=False)
regenerate_btn = gr.Button(value="๐Ÿ”„ Regenerate", interactive=False)
share_btn = gr.Button(value="๐Ÿ“ท Share")
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=2048,
value=1800,
step=64,
interactive=True,
label="Max output tokens",
)
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
btn_list = [
leftvote_btn,
rightvote_btn,
tie_btn,
bothbad_btn,
regenerate_btn,
clear_btn,
]
leftvote_btn.click(
leftvote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
rightvote_btn.click(
rightvote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
tie_btn.click(
tievote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
bothbad_btn.click(
bothbad_vote_last_response,
states + model_selectors,
model_selectors + [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
regenerate_btn.click(
regenerate, states, states + chatbots + [textbox] + btn_list
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
clear_btn.click(
clear_history,
None,
states
+ chatbots
+ model_selectors
+ [multimodal_textbox, textbox]
+ btn_list
+ [random_btn]
+ [slow_warning],
)
share_js = """
function (a, b, c, d) {
const captureElement = document.querySelector('#share-region-anony');
html2canvas(captureElement)
.then(canvas => {
canvas.style.display = 'none'
document.body.appendChild(canvas)
return canvas
})
.then(canvas => {
const image = canvas.toDataURL('image/png')
const a = document.createElement('a')
a.setAttribute('download', 'chatbot-arena.png')
a.setAttribute('href', image)
a.click()
canvas.remove()
});
return [a, b, c, d];
}
"""
share_btn.click(share_click, states + model_selectors, [], js=share_js)
multimodal_textbox.input(add_image, [multimodal_textbox], [imagebox]).then(
set_visible_image, [multimodal_textbox], [image_column]
).then(
clear_history_example,
None,
states + chatbots + model_selectors + [multimodal_textbox, textbox] + btn_list,
)
multimodal_textbox.submit(
add_text,
states + model_selectors + [multimodal_textbox],
states
+ chatbots
+ [multimodal_textbox, textbox]
+ btn_list
+ [random_btn]
+ [slow_warning],
).then(set_invisible_image, [], [image_column]).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons,
[],
btn_list,
)
textbox.submit(
add_text,
states + model_selectors + [textbox],
states
+ chatbots
+ [multimodal_textbox, textbox]
+ btn_list
+ [random_btn]
+ [slow_warning],
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons,
[],
btn_list,
)
if random_questions:
random_btn.click(
get_vqa_sample, # First, get the VQA sample
[], # Pass the path to the VQA samples
[multimodal_textbox, imagebox], # Outputs are textbox and imagebox
).then(set_visible_image, [multimodal_textbox], [image_column]).then(
clear_history_example,
None,
states
+ chatbots
+ model_selectors
+ [multimodal_textbox, textbox]
+ btn_list
+ [random_btn],
)
return states + model_selectors