Spaces:
Runtime error
Runtime error
Update Space (evaluate main: c447fc8e)
Browse files- bertscore.py +34 -54
- requirements.txt +1 -1
bertscore.py
CHANGED
|
@@ -15,8 +15,6 @@
|
|
| 15 |
|
| 16 |
import functools
|
| 17 |
from contextlib import contextmanager
|
| 18 |
-
from dataclasses import dataclass
|
| 19 |
-
from typing import List, Optional, Union
|
| 20 |
|
| 21 |
import bert_score
|
| 22 |
import datasets
|
|
@@ -99,42 +97,14 @@ Examples:
|
|
| 99 |
"""
|
| 100 |
|
| 101 |
|
| 102 |
-
@dataclass
|
| 103 |
-
class BERTScoreConfig(evaluate.info.Config):
|
| 104 |
-
|
| 105 |
-
name: str = "default"
|
| 106 |
-
|
| 107 |
-
pos_label: Union[str, int] = 1
|
| 108 |
-
average: str = "binary"
|
| 109 |
-
lang: Optional[str] = None
|
| 110 |
-
sample_weight: Optional[List[float]] = None
|
| 111 |
-
|
| 112 |
-
lang: Optional[str] = None
|
| 113 |
-
model_type: Optional[str] = None
|
| 114 |
-
num_layers: Optional[int] = None
|
| 115 |
-
verbose: bool = False
|
| 116 |
-
idf = bool = False
|
| 117 |
-
device: Optional[str] = None
|
| 118 |
-
batch_size: int = 64
|
| 119 |
-
nthreads: int = 4
|
| 120 |
-
all_layers: bool = False
|
| 121 |
-
rescale_with_baseline: bool = False
|
| 122 |
-
baseline_path: Optional[str] = None
|
| 123 |
-
use_fast_tokenizer: bool = False
|
| 124 |
-
|
| 125 |
-
|
| 126 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 127 |
class BERTScore(evaluate.Metric):
|
| 128 |
-
|
| 129 |
-
ALLOWED_CONFIG_NAMES = ["default"]
|
| 130 |
-
|
| 131 |
-
def _info(self, config):
|
| 132 |
return evaluate.MetricInfo(
|
| 133 |
description=_DESCRIPTION,
|
| 134 |
citation=_CITATION,
|
| 135 |
homepage="https://github.com/Tiiiger/bert_score",
|
| 136 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 137 |
-
config=config,
|
| 138 |
features=[
|
| 139 |
datasets.Features(
|
| 140 |
{
|
|
@@ -160,12 +130,24 @@ class BERTScore(evaluate.Metric):
|
|
| 160 |
self,
|
| 161 |
predictions,
|
| 162 |
references,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
):
|
| 164 |
|
| 165 |
if isinstance(references[0], str):
|
| 166 |
references = [[ref] for ref in references]
|
| 167 |
|
| 168 |
-
if
|
| 169 |
idf_sents = [r for ref in references for r in ref]
|
| 170 |
else:
|
| 171 |
idf_sents = None
|
|
@@ -174,34 +156,32 @@ class BERTScore(evaluate.Metric):
|
|
| 174 |
scorer = bert_score.BERTScorer
|
| 175 |
|
| 176 |
if version.parse(bert_score.__version__) >= version.parse("0.3.10"):
|
| 177 |
-
get_hash = functools.partial(get_hash, use_fast_tokenizer=
|
| 178 |
-
scorer = functools.partial(scorer, use_fast_tokenizer=
|
| 179 |
-
elif
|
| 180 |
raise ImportWarning(
|
| 181 |
"To use a fast tokenizer, the module `bert-score>=0.3.10` is required, and the current version of "
|
| 182 |
"`bert-score` doesn't match this condition.\n"
|
| 183 |
'You can install it with `pip install "bert-score>=0.3.10"`.'
|
| 184 |
)
|
| 185 |
|
| 186 |
-
if
|
| 187 |
-
if
|
| 188 |
raise ValueError(
|
| 189 |
"Either 'lang' (e.g. 'en') or 'model_type' (e.g. 'microsoft/deberta-xlarge-mnli')"
|
| 190 |
" must be specified"
|
| 191 |
)
|
| 192 |
-
model_type = bert_score.utils.lang2model[
|
| 193 |
-
else:
|
| 194 |
-
model_type = self.config.model_type
|
| 195 |
|
| 196 |
-
if
|
| 197 |
num_layers = bert_score.utils.model2layers[model_type]
|
| 198 |
|
| 199 |
hashcode = get_hash(
|
| 200 |
model=model_type,
|
| 201 |
num_layers=num_layers,
|
| 202 |
-
idf=
|
| 203 |
-
rescale_with_baseline=
|
| 204 |
-
use_custom_baseline=
|
| 205 |
)
|
| 206 |
|
| 207 |
with filter_logging_context():
|
|
@@ -209,22 +189,22 @@ class BERTScore(evaluate.Metric):
|
|
| 209 |
self.cached_bertscorer = scorer(
|
| 210 |
model_type=model_type,
|
| 211 |
num_layers=num_layers,
|
| 212 |
-
batch_size=
|
| 213 |
-
nthreads=
|
| 214 |
-
all_layers=
|
| 215 |
-
idf=
|
| 216 |
idf_sents=idf_sents,
|
| 217 |
-
device=
|
| 218 |
-
lang=
|
| 219 |
-
rescale_with_baseline=
|
| 220 |
-
baseline_path=
|
| 221 |
)
|
| 222 |
|
| 223 |
(P, R, F) = self.cached_bertscorer.score(
|
| 224 |
cands=predictions,
|
| 225 |
refs=references,
|
| 226 |
-
verbose=
|
| 227 |
-
batch_size=
|
| 228 |
)
|
| 229 |
output_dict = {
|
| 230 |
"precision": P.tolist(),
|
|
|
|
| 15 |
|
| 16 |
import functools
|
| 17 |
from contextlib import contextmanager
|
|
|
|
|
|
|
| 18 |
|
| 19 |
import bert_score
|
| 20 |
import datasets
|
|
|
|
| 97 |
"""
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 101 |
class BERTScore(evaluate.Metric):
|
| 102 |
+
def _info(self):
|
|
|
|
|
|
|
|
|
|
| 103 |
return evaluate.MetricInfo(
|
| 104 |
description=_DESCRIPTION,
|
| 105 |
citation=_CITATION,
|
| 106 |
homepage="https://github.com/Tiiiger/bert_score",
|
| 107 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
|
| 108 |
features=[
|
| 109 |
datasets.Features(
|
| 110 |
{
|
|
|
|
| 130 |
self,
|
| 131 |
predictions,
|
| 132 |
references,
|
| 133 |
+
lang=None,
|
| 134 |
+
model_type=None,
|
| 135 |
+
num_layers=None,
|
| 136 |
+
verbose=False,
|
| 137 |
+
idf=False,
|
| 138 |
+
device=None,
|
| 139 |
+
batch_size=64,
|
| 140 |
+
nthreads=4,
|
| 141 |
+
all_layers=False,
|
| 142 |
+
rescale_with_baseline=False,
|
| 143 |
+
baseline_path=None,
|
| 144 |
+
use_fast_tokenizer=False,
|
| 145 |
):
|
| 146 |
|
| 147 |
if isinstance(references[0], str):
|
| 148 |
references = [[ref] for ref in references]
|
| 149 |
|
| 150 |
+
if idf:
|
| 151 |
idf_sents = [r for ref in references for r in ref]
|
| 152 |
else:
|
| 153 |
idf_sents = None
|
|
|
|
| 156 |
scorer = bert_score.BERTScorer
|
| 157 |
|
| 158 |
if version.parse(bert_score.__version__) >= version.parse("0.3.10"):
|
| 159 |
+
get_hash = functools.partial(get_hash, use_fast_tokenizer=use_fast_tokenizer)
|
| 160 |
+
scorer = functools.partial(scorer, use_fast_tokenizer=use_fast_tokenizer)
|
| 161 |
+
elif use_fast_tokenizer:
|
| 162 |
raise ImportWarning(
|
| 163 |
"To use a fast tokenizer, the module `bert-score>=0.3.10` is required, and the current version of "
|
| 164 |
"`bert-score` doesn't match this condition.\n"
|
| 165 |
'You can install it with `pip install "bert-score>=0.3.10"`.'
|
| 166 |
)
|
| 167 |
|
| 168 |
+
if model_type is None:
|
| 169 |
+
if lang is None:
|
| 170 |
raise ValueError(
|
| 171 |
"Either 'lang' (e.g. 'en') or 'model_type' (e.g. 'microsoft/deberta-xlarge-mnli')"
|
| 172 |
" must be specified"
|
| 173 |
)
|
| 174 |
+
model_type = bert_score.utils.lang2model[lang.lower()]
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
if num_layers is None:
|
| 177 |
num_layers = bert_score.utils.model2layers[model_type]
|
| 178 |
|
| 179 |
hashcode = get_hash(
|
| 180 |
model=model_type,
|
| 181 |
num_layers=num_layers,
|
| 182 |
+
idf=idf,
|
| 183 |
+
rescale_with_baseline=rescale_with_baseline,
|
| 184 |
+
use_custom_baseline=baseline_path is not None,
|
| 185 |
)
|
| 186 |
|
| 187 |
with filter_logging_context():
|
|
|
|
| 189 |
self.cached_bertscorer = scorer(
|
| 190 |
model_type=model_type,
|
| 191 |
num_layers=num_layers,
|
| 192 |
+
batch_size=batch_size,
|
| 193 |
+
nthreads=nthreads,
|
| 194 |
+
all_layers=all_layers,
|
| 195 |
+
idf=idf,
|
| 196 |
idf_sents=idf_sents,
|
| 197 |
+
device=device,
|
| 198 |
+
lang=lang,
|
| 199 |
+
rescale_with_baseline=rescale_with_baseline,
|
| 200 |
+
baseline_path=baseline_path,
|
| 201 |
)
|
| 202 |
|
| 203 |
(P, R, F) = self.cached_bertscorer.score(
|
| 204 |
cands=predictions,
|
| 205 |
refs=references,
|
| 206 |
+
verbose=verbose,
|
| 207 |
+
batch_size=batch_size,
|
| 208 |
)
|
| 209 |
output_dict = {
|
| 210 |
"precision": P.tolist(),
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
git+https://github.com/huggingface/evaluate@
|
| 2 |
bert_score
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@c447fc8eda9c62af501bfdc6988919571050d950
|
| 2 |
bert_score
|