File size: 11,243 Bytes
26df9fd
 
 
 
 
 
47681bb
0540b53
03ec9cb
2127ae4
 
 
26df9fd
2127ae4
 
47681bb
2127ae4
 
 
26df9fd
810b5d2
 
 
 
2127ae4
26df9fd
0540b53
2127ae4
 
0540b53
26df9fd
2127ae4
 
 
 
 
 
 
 
 
 
 
 
 
26df9fd
2127ae4
 
26df9fd
 
 
 
 
 
2127ae4
26df9fd
2127ae4
 
26df9fd
 
 
 
 
47681bb
 
 
 
 
 
 
 
 
 
2127ae4
26df9fd
 
 
 
47681bb
 
26df9fd
2127ae4
03ec9cb
 
 
 
 
 
 
 
 
26df9fd
2127ae4
 
26df9fd
 
2127ae4
26df9fd
 
 
 
 
 
2127ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810b5d2
 
2127ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26df9fd
2127ae4
 
 
 
 
 
 
 
 
 
 
 
26df9fd
2127ae4
26df9fd
0540b53
2127ae4
 
0540b53
 
2127ae4
 
 
 
 
0540b53
2127ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47681bb
2127ae4
47681bb
2127ae4
 
 
 
 
 
 
 
47681bb
2127ae4
 
47681bb
2127ae4
 
 
26df9fd
2127ae4
26df9fd
2127ae4
 
 
26df9fd
 
2127ae4
 
26df9fd
 
810b5d2
 
 
2127ae4
 
 
 
 
 
 
26df9fd
2127ae4
 
26df9fd
 
2127ae4
 
 
 
26df9fd
2127ae4
 
 
 
 
 
 
26df9fd
2127ae4
26df9fd
 
2127ae4
0540b53
03ec9cb
26df9fd
 
2127ae4
26df9fd
 
2127ae4
0540b53
26df9fd
 
 
2127ae4
 
 
 
26df9fd
 
2127ae4
 
26df9fd
2127ae4
26df9fd
 
2127ae4
 
 
 
 
26df9fd
2127ae4
 
0540b53
26df9fd
2127ae4
0540b53
2127ae4
 
26df9fd
2127ae4
 
26df9fd
03ec9cb
0540b53
 
2127ae4
0540b53
 
26df9fd
2127ae4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import re
import asyncio
import json
import os
import traceback
from pyppeteer import launch
from bs4 import BeautifulSoup, NavigableString
from ai_config_faiss import get_ai_assistant
from video_utils import get_youtube_video, generate_clips
from typing import Dict, List, Set, Optional
from dataclasses import dataclass, asdict
import logging

# Set the TOKENIZERS_PARALLELISM environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Configure logging to suppress MoviePy's console output
logging.getLogger("moviepy").setLevel(logging.WARNING)


CACHE_DIR = "cache/"
DB_METADATA_FILE = os.path.join(CACHE_DIR, "db_metadata.json")
SUBJECTS = [
    " 5G ", " AI ", " Innovation ", " Network ", " Enterprise ", " Open RAN ",
    " TechCo ", " B2B ", " API ", " Infrastructure ", " Connectivity "
]

os.makedirs(CACHE_DIR, exist_ok=True)


@dataclass
class TranscriptSegment:
    metadata: Dict[str, Optional[str]]
    text: str


@dataclass
class VideoInfo:
    metadata: Dict[str, Optional[str]]
    transcript: List[TranscriptSegment]


async def get_client_rendered_content(url: str) -> str:
    browser = None
    try:
        browser = await launch()
        page = await browser.newPage()
        await page.goto(url, {'waitUntil': 'networkidle0', 'timeout': 60000})
        await asyncio.sleep(5)
        return await page.content()
    except Exception as e:
        logger.error(f"Error fetching content for {url}: {str(e)}")
        raise
    finally:
        if browser:
            await browser.close()


def extract_text_with_br(element):
    result = ['<br><br>']
    for child in element.descendants:
        if isinstance(child, NavigableString):
            result.append(child.strip())
        elif child.name == 'br':
            result.append('<br>')
    return ''.join(result).strip()


def extract_info(html_content: str) -> VideoInfo:
    try:
        soup = BeautifulSoup(html_content, 'html.parser')
        title = soup.title.string.strip() if soup.title else None
        date_elem = soup.find('p', class_='content-date')
        date = date_elem.find('span', class_='ng-binding').text.strip() if date_elem else None
        youtube_iframe = soup.find('iframe', src=lambda x: x and 'youtube.com' in x)
        youtube_url = youtube_iframe['src'] if youtube_iframe else None
        youtube_id = re.search(r'youtube\.com/embed/([^?]+)', youtube_url).group(1) if youtube_url else None
        if get_youtube_video(CACHE_DIR, youtube_id):
            transcript_elem = soup.find(id='transcript0')
            transcript = extract_text_with_br(transcript_elem) if transcript_elem else None
            return VideoInfo(
                metadata={'title': title, 'date': date, 'youtube_id': youtube_id},
                transcript=parse_transcript(transcript) if transcript else []
            )
        else:
            return None
    except Exception as e:
        logger.error(f"Error extracting information: {str(e)}")
        raise


def read_file(filename: str) -> Optional[str]:
    try:
        if os.path.exists(filename):
            with open(filename, 'r', encoding='utf-8') as f:
                return f.read()
        return None
    except Exception as e:
        logger.error(f"Error reading file {filename}: {str(e)}")
        raise


def extract_subject_info(text: str) -> List[str]:
    return [subject for subject in SUBJECTS if subject.lower() in text.lower()]


def extract_speaker_info(segment: str) -> Optional[Dict[str, Optional[str]]]:
    pattern = r'<br><br>(?:(?P<speaker>[^,(]+?)(?:,\s*(?P<company>[^(]+?))?)?\s*\((?P<timestamp>\d{2}:\d{2}:\d{2}|\d{2}:\d{2})\):<br>'

    match = re.match(pattern, segment)
    return {key: value.strip() if value else None for key, value in match.groupdict().items()} if match else None


def parse_transcript(content: str) -> List[TranscriptSegment]:
    parsed_segments = []
    saved_info = None

    segments = [segment.strip() for segment in re.split(r'(<br><br>.*?\((?:\d{2}:)?\d{2}:\d{2}\):<br>)',
                                                        content) if segment.strip()]

    for i, segment in enumerate(segments):
        speaker_info = extract_speaker_info(segment)
        if speaker_info:
            if speaker_info['speaker']:
                if saved_info:
                    text = segments[i-1] if i > 0 else ""
                    parsed_segments.append(TranscriptSegment(
                        metadata={
                            'speaker': saved_info['speaker'],
                            'company': saved_info['company'],
                            'start_timestamp': saved_info['timestamp'],
                            'end_timestamp': speaker_info['timestamp'],
                            'subjects': extract_subject_info(text)
                        },
                        text=text
                    ))
                saved_info = speaker_info
                if not saved_info['company']:
                    saved_info['company'] = "Unknown"
            else:
                if saved_info:
                    text = segments[i-1] if i > 0 else ""
                    parsed_segments.append(TranscriptSegment(
                        metadata={
                            'speaker': saved_info['speaker'],
                            'company': saved_info['company'],
                            'start_timestamp': saved_info['timestamp'],
                            'end_timestamp': speaker_info['timestamp'],
                            'subjects': extract_subject_info(text)
                        },
                        text=text
                    ))
                    saved_info['timestamp'] = speaker_info['timestamp']
        elif saved_info:
            continue

    if saved_info:
        text = segments[-1]
        parsed_segments.append(TranscriptSegment(
            metadata={
                'speaker': saved_info['speaker'],
                'company': saved_info['company'],
                'start_timestamp': saved_info['timestamp'],
                'end_timestamp': "00:00:00",
                'subjects': extract_subject_info(text)
            },
            text=text
        ))

    return parsed_segments


def get_cached_filename(url: str) -> str:
    return f"{CACHE_DIR}cached_{url.replace('://', '_').replace('/', '_')}"


async def process_url(url: str) -> Optional[VideoInfo]:
    try:
        cached_filename = get_cached_filename(url)
        html_filename = f"{cached_filename}.html"
        json_filename = f"{cached_filename}.json"

        if os.path.exists(json_filename):
            logger.info(f"Using cached JSON for {url}")
            with open(json_filename, 'r', encoding='utf-8') as f:
                data = json.load(f)
                return VideoInfo(
                    metadata=data['metadata'],
                    transcript=[TranscriptSegment(**segment) for segment in data['transcript']]
                )

        if os.path.exists(html_filename):
            logger.info(f"Using cached HTML for {url}")
            content = read_file(html_filename)
        else:
            logger.info(f"Fetching content from web for {url}")
            content = await get_client_rendered_content(url)
            with open(html_filename, 'w', encoding='utf-8') as f:
                f.write(content)

        info = extract_info(content)

        if info.transcript:
            logger.info(f"Generating clips for {url}")
            info_dict = asdict(info)
            info_dict['transcript'] = generate_clips(CACHE_DIR, info_dict)
            info = VideoInfo(
                metadata=info_dict['metadata'],
                transcript=[TranscriptSegment(**segment) for segment in info_dict['transcript']]
            )

            with open(json_filename, 'w', encoding='utf-8') as f:
                json.dump(asdict(info), f, ensure_ascii=False, indent=4)

            logger.info(f"Information extracted and saved to {json_filename}")
        else:
            logger.warning(f"No transcript found for {url}")

        return info

    except Exception:
        logger.error(f"Error processing URL {url}:\n{traceback.format_exc()}")
        return None


async def process_urls(urls: List[str]) -> List[Optional[VideoInfo]]:
    return await asyncio.gather(*[process_url(url) for url in urls])


def db_save_metadata_sets(processed_urls: Set[str], speakers: Set[str],
                          companies: Dict[str, Set[str]],
                          sentiments: Set[str], subjects: Set[str]):
    metadata = {
        'processed_urls': list(processed_urls),
        'speakers': list(speakers),
        'companies': {company: list(speakers) for company, speakers in companies.items()},
        'sentiments': list(sentiments),
        'subjects': list(subjects)
    }

    with open(DB_METADATA_FILE, 'w') as f:
        json.dump(metadata, f, indent=2)


def db_load_metadata_sets() -> tuple:
    if os.path.exists(DB_METADATA_FILE):
        with open(DB_METADATA_FILE, 'r') as f:
            metadata = json.load(f)

        return (
            set(metadata.get('processed_urls', [])),
            set(metadata.get('speakers', [])),
            {company: set(speakers) for company, speakers in metadata.get('companies', {}).items()},
            set(metadata.get('sentiments', [])),
            set(metadata.get('subjects', SUBJECTS))
        )

    return set(), set(), {}, set(), set(SUBJECTS)


async def main():
    assistant = get_ai_assistant()
    url_file = "dsp-urls.txt"

    if not os.path.exists(url_file):
        logger.error(f"Error: {url_file} not found.")
        return

    processed_urls, speakers, companies, sentiments, subjects = db_load_metadata_sets()

    with open(url_file, 'r') as f:
        urls = [line.strip() for line in f if line.strip()]

    total_urls = len(urls)
    for i, url in enumerate(urls, 1):
        if url in processed_urls:
            logger.info(f"[{i}/{total_urls}] {url} already processed")
            continue

        logger.info(f"[{i}/{total_urls}] Processing {url}")
        info = await process_url(url)
        if info is None:
            logger.warning(f"[{i}/{total_urls}] Failed to process {url}")
            continue

        for entry in info.transcript:
            metadata = {**info.metadata, **entry.metadata}
            company = metadata.get('company')
            speaker = metadata.get('speaker')
            entry_subjects = metadata.get('subjects', [])

            if speaker:
                speakers.add(speaker)
            subjects.update(entry_subjects)

            assistant.add_to_knowledge_base(entry.text, data_type='text', metadata=metadata.copy())

            if company and speaker:
                companies.setdefault(company, set()).add(speaker)

        processed_urls.add(url)
        logger.info(f"[{i}/{total_urls}] Added new url: {url}")

    db_save_metadata_sets(processed_urls, speakers, companies, sentiments, subjects)
    assistant.save()

    logger.info("Processing complete. Check logs for any errors.")


if __name__ == "__main__":
    asyncio.run(main())