Spaces:
Running
Running
File size: 9,553 Bytes
c8d3120 bb54a91 c8d3120 bb54a91 c8d3120 ad0ef65 416b3c8 ad0ef65 f839055 3d9cf23 f839055 c8d3120 ad0ef65 c8d3120 f839055 49a4b57 f839055 3d9cf23 f839055 796e19e adf5c3a c8d3120 f839055 493b1d3 f839055 c8d3120 ad0ef65 c8d3120 01ca356 7ae835e 01ca356 7ae835e 01ca356 7ae835e 4bd1ca5 36ff196 2d1b8d6 4bd1ca5 7ae835e 01ca356 493b1d3 01ca356 493b1d3 01ca356 493b1d3 bb54a91 7ae835e bb54a91 7ae835e 4bd1ca5 36ff196 2d1b8d6 4bd1ca5 7ae835e bb54a91 c8d3120 f839055 c8d3120 bb54a91 c8d3120 bb54a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import streamlit as st
import os
from dotenv import load_dotenv
import time
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import LLMChain
# Set persistent storage path
PERSISTENT_DIR = "vector_db"
def initialize_vector_db():
# Check if vector database already exists in persistent storage
if os.path.exists(PERSISTENT_DIR) and os.listdir(PERSISTENT_DIR):
embeddings = HuggingFaceEmbeddings()
vector_db = Chroma(persist_directory=PERSISTENT_DIR, embedding_function=embeddings)
return None, vector_db
base_dir = os.path.dirname(os.path.abspath(__file__))
pdf_files = [f for f in os.listdir(base_dir) if f.endswith('.pdf')]
loaders = [PyPDFLoader(os.path.join(base_dir, fn)) for fn in pdf_files]
documents = []
for loader in loaders:
documents.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings()
vector_db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSISTENT_DIR
)
vector_db.persist()
return documents, vector_db
# System instructions for the LLM
system_prompt = """You are an expert Agro-Homeopathy doctor. When providing remedies:
1. Always specify medicine potency as 6c unless the uploaded text mentions some other value explicitly
3. Provide comprehensive diagnosis and treatment plans
4. Base recommendations on homeopathic principles
"""
api_key1 = os.getenv("api_key")
start_time = time.time()
st.set_page_config(page_title="Dr. Radha: The Agro-Homeopath", page_icon="🚀", layout="wide")
st.markdown("""
<style>
#the-title {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.title("📚 Ask Dr. Radha - World's First AI based Agro-Homeopathy Doctor")
# Add information request message
st.markdown("""
Please provide complete details about the issue, including:
- Detailed description of plant symptoms
- Current weather conditions
- Current Temperature
""")
human_image = "human.png"
robot_image = "bot.jpg"
# Set up Groq API with temperature 0.7
llm = ChatGroq(
api_key=api_key1,
max_tokens=None,
timeout=None,
max_retries=2,
temperature=0.7,
model="llama-3.1-70b-versatile"
)
embeddings = HuggingFaceEmbeddings()
end_time = time.time()
print(f"Setting up Groq LLM & Embeddings took {end_time - start_time:.4f} seconds")
# Initialize session state
if "documents" not in st.session_state:
st.session_state["documents"] = None
if "vector_db" not in st.session_state:
st.session_state["vector_db"] = None
if "query" not in st.session_state:
st.session_state["query"] = ""
start_time = time.time()
if st.session_state["documents"] is None or st.session_state["vector_db"] is None:
with st.spinner("Loading data..."):
documents, vector_db = initialize_vector_db()
st.session_state["documents"] = documents
st.session_state["vector_db"] = vector_db
else:
documents = st.session_state["documents"]
vector_db = st.session_state["vector_db"]
end_time = time.time()
print(f"Loading and processing PDFs & vector database took {end_time - start_time:.4f} seconds")
start_time = time.time()
retriever = vector_db.as_retriever()
prompt_template = """You are an expert Agro-Homeopathy doctor. Analyze the following context and question to provide a clear, structured response.
Context: {context}
Question: {question}
Provide your response in the following format:
Diagnosis: Analyze the described plant condition
Treatment: Recommend specific homeopathic medicine(s) with exact potency and repetition frequency. Do not suggest more than 5 medicines for any single problem.
Instructions for Use:
Small Plots or Gardens: Make sure your dispensing equipment is not contaminated with
other chemicals or fertilisers as these may antidote the energetic effects of the treatment—
rinse well with hot water before use if necessary. Add one pill to each 200 ml of water, shake
vigorously, and then spray or water your plants. Avoid using other chemicals or fertilisers for
10 days following treatment so that the energetic effects of the treatment are not antidoted.
(One vial of 100 pills makes 20 litres. Plants remain insect or disease free for up to 3 months
following one treatment.)
Large Plots or Farms: Add the remedy to water and apply with the dispensing device of
your choice: watering can, backpack sprayer, boomspray, reticulation systems (add to tanks
or pumps). Make sure your dispensing equipment is not contaminated with other chemicals
or fertilisers as these may antidote the energetic effects of the treatment—rinse with hot
water or steam clean before use if necessary. Avoid using other chemicals or fertilisers for
10 days following treatment.
Dosage rates are approximate and may vary according to different circumstances and
experiences. Suggested doses are:
A: 10-50 pills or 10ml/10 litre on small areas
B: 500 pills or 125ml/500l per hectare
C: 1000 pills or 250ml/500l per hectare
D: 2500 pills or 500ml/500l per hectare
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
Recommendations: Provide couple of key pertinent recommendations based on the query
Remember to maintain a professional, clear tone and ensure all medicine recommendations include specific potency.
Answer:"""
# Create the QA chain with correct variables
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={
"prompt": PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
}
)
# Create a separate LLMChain for fallback
fallback_template = """As an expert Agro-Homeopathy doctor, provide a structured response to the following question:
Question: {question}
Format your response as follows:
Diagnosis: Analyze the described plant condition
Treatment: Recommend specific homeopathic medicine(s) with exact potency and repetition frequency. Do not suggest more than 5 medicines for any single problem.
Instructions for Use:
Small Plots or Gardens: Make sure your dispensing equipment is not contaminated with
other chemicals or fertilisers as these may antidote the energetic effects of the treatment—
rinse well with hot water before use if necessary. Add one pill to each 200 ml of water, shake
vigorously, and then spray or water your plants. Avoid using other chemicals or fertilisers for
10 days following treatment so that the energetic effects of the treatment are not antidoted.
(One vial of 100 pills makes 20 litres. Plants remain insect or disease free for up to 3 months
following one treatment.)
Large Plots or Farms: Add the remedy to water and apply with the dispensing device of
your choice: watering can, backpack sprayer, boomspray, reticulation systems (add to tanks
or pumps). Make sure your dispensing equipment is not contaminated with other chemicals
or fertilisers as these may antidote the energetic effects of the treatment—rinse with hot
water or steam clean before use if necessary. Avoid using other chemicals or fertilisers for
10 days following treatment.
Dosage rates are approximate and may vary according to different circumstances and
experiences. Suggested doses are:
A: 10-50 pills or 10ml/10 litre on small areas
B: 500 pills or 125ml/500l per hectare
C: 1000 pills or 250ml/500l per hectare
D: 2500 pills or 500ml/500l per hectare
Add pills or liquid to your water and mix (with a stick if necessary for large containers).
Recommendations: Provide couple of key pertinent recommendations based on the query
Maintain a professional tone and ensure all medicine recommendations include specific potency.
Answer:"""
fallback_prompt = PromptTemplate(template=fallback_template, input_variables=["question"])
fallback_chain = LLMChain(llm=llm, prompt=fallback_prompt)
chat_container = st.container()
with st.form(key='query_form'):
query = st.text_input("Ask your question:", value="")
submit_button = st.form_submit_button(label='Submit')
end_time = time.time()
print(f"Setting up retrieval chain took {end_time - start_time:.4f} seconds")
start_time = time.time()
if submit_button and query:
with st.spinner("Generating response..."):
result = qa({"query": query})
if result['result'].strip() == "":
# If no result from PDF, use fallback chain
fallback_result = fallback_chain.run(query)
response = fallback_result
else:
response = result['result']
col1, col2 = st.columns([1, 10])
with col1:
st.image(human_image, width=80)
with col2:
st.markdown(f"{query}")
col1, col2 = st.columns([1, 10])
with col1:
st.image(robot_image, width=80)
with col2:
st.markdown(f"{response}")
st.markdown("---")
st.session_state["query"] = ""
end_time = time.time()
print(f"Actual query took {end_time - start_time:.4f} seconds")
|