Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,52 @@
|
|
1 |
import pandas as pd
|
|
|
|
|
|
|
2 |
import os
|
3 |
from langchain_groq import ChatGroq
|
4 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
-
from langchain_chroma import Chroma
|
6 |
-
from langchain_core.prompts import PromptTemplate
|
7 |
-
from langchain_core.output_parsers import StrOutputParser
|
8 |
-
from langchain_core.runnables import RunnablePassthrough
|
9 |
-
import gradio as gr
|
10 |
|
11 |
-
|
12 |
-
context_data = pd.read_csv("drugs_side_effects_drugs_com.csv")
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
api_key=os.environ.get("GROQ_API_KEY")
|
18 |
-
)
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
model_name="mixedbread-ai/mxbai-embed-large-v1"
|
23 |
-
)
|
24 |
|
25 |
-
# Create and populate vector store
|
26 |
vectorstore = Chroma(
|
27 |
collection_name="medical_dataset_store",
|
28 |
embedding_function=embed_model,
|
29 |
persist_directory="./",
|
30 |
)
|
31 |
-
|
|
|
|
|
|
|
32 |
retriever = vectorstore.as_retriever()
|
33 |
|
34 |
-
|
35 |
-
template = """You are a medical expert. Use the provided context to answer the question.
|
36 |
-
If you don't know the answer, say so. Explain your answer in detail.
|
37 |
-
Do not discuss the context in your response; just provide the answer directly.
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
rag_prompt = PromptTemplate.from_template(template)
|
44 |
|
45 |
-
|
|
|
|
|
46 |
rag_chain = (
|
47 |
{"context": retriever, "question": RunnablePassthrough()}
|
48 |
| rag_prompt
|
49 |
| llm
|
50 |
| StrOutputParser()
|
51 |
)
|
|
|
52 |
|
53 |
def rag_memory_stream(message, history):
|
54 |
partial_text = ""
|
@@ -56,26 +54,26 @@ def rag_memory_stream(message, history):
|
|
56 |
partial_text += new_text
|
57 |
yield partial_text
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
initial_history = [("", greetings_message)]
|
65 |
|
66 |
-
# Create Gradio interface
|
67 |
demo = gr.Interface(
|
68 |
-
title=
|
69 |
fn=rag_memory_stream,
|
70 |
inputs=[
|
71 |
-
|
72 |
-
gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
73 |
],
|
74 |
-
outputs=gr.Chatbot(label="Chat History"),
|
75 |
allow_flagging="never",
|
76 |
-
|
|
|
77 |
)
|
78 |
|
|
|
79 |
if __name__ == "__main__":
|
80 |
-
|
81 |
-
demo.launch(share=True)
|
|
|
1 |
import pandas as pd
|
2 |
+
|
3 |
+
context_data = pd.read_csv("drugs_side_effects_drugs_com.csv")
|
4 |
+
|
5 |
import os
|
6 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=os.environ.get("GROQ_API_KEY"))
|
|
|
9 |
|
10 |
+
## Embedding model!
|
11 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
12 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
|
|
|
|
13 |
|
14 |
+
# create vector store!
|
15 |
+
from langchain_chroma import Chroma
|
|
|
|
|
16 |
|
|
|
17 |
vectorstore = Chroma(
|
18 |
collection_name="medical_dataset_store",
|
19 |
embedding_function=embed_model,
|
20 |
persist_directory="./",
|
21 |
)
|
22 |
+
|
23 |
+
# add data to vector nstore
|
24 |
+
vectorstore.add_texts(context_data)
|
25 |
+
|
26 |
retriever = vectorstore.as_retriever()
|
27 |
|
28 |
+
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
|
|
29 |
|
30 |
+
template = ("""You are a medical expert.
|
31 |
+
Use the provided context to answer the question.
|
32 |
+
If you don't know the answer, say so. Explain your answer in detail.
|
33 |
+
Do not discuss the context in your response; just provide the answer directly.
|
34 |
+
Context: {context}
|
35 |
+
Question: {question}
|
36 |
+
Answer:""")
|
37 |
|
38 |
rag_prompt = PromptTemplate.from_template(template)
|
39 |
|
40 |
+
from langchain_core.output_parsers import StrOutputParser
|
41 |
+
from langchain_core.runnables import RunnablePassthrough
|
42 |
+
|
43 |
rag_chain = (
|
44 |
{"context": retriever, "question": RunnablePassthrough()}
|
45 |
| rag_prompt
|
46 |
| llm
|
47 |
| StrOutputParser()
|
48 |
)
|
49 |
+
import gradio as gr
|
50 |
|
51 |
def rag_memory_stream(message, history):
|
52 |
partial_text = ""
|
|
|
54 |
partial_text += new_text
|
55 |
yield partial_text
|
56 |
|
57 |
+
greetingsmessage = """Hello! Welcome to MediGuide ChatBot. I'm here to provide you with quick and accurate information on medical drugs.
|
58 |
+
Whether you need details on usage, side effects , etc feel free to ask. Let's enhance patient care together!"""
|
59 |
+
|
60 |
+
initial_history = [("", greetingsmessage)]
|
61 |
+
|
62 |
+
title = "MediGuide ChatBot"
|
63 |
|
|
|
64 |
|
|
|
65 |
demo = gr.Interface(
|
66 |
+
title=title,
|
67 |
fn=rag_memory_stream,
|
68 |
inputs=[
|
69 |
+
gr.Chatbot(value=initial_history, label="Chat History"),"text"
|
|
|
70 |
],
|
71 |
+
outputs=[gr.Chatbot(label="Chat History"),"text"],
|
72 |
allow_flagging="never",
|
73 |
+
fill_height=True,
|
74 |
+
theme="glass",
|
75 |
)
|
76 |
|
77 |
+
|
78 |
if __name__ == "__main__":
|
79 |
+
demo.launch()
|
|