etweedy commited on
Commit
3241cee
·
1 Parent(s): cbb6fd7

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -7,18 +7,18 @@ class CNN(nn.Module):
7
  """
8
  A custom CNN class. The network has: (1) a convolution layer with 1 input channel and 16 output channels with ReLU activation and 2x2 max-pooling, (2) a second convolution layer with 16 input channels and 32 output channels with ReLU activation and 2x2 max-pooling, and (3) a linear output layer with 10 outputs.
9
  """
10
- def __init__(self):
11
- super(CNN,self).__init__()
12
- self.conv1 = nn.Sequential(
13
- nn.Conv2d(1,16,5,stride=1,padding=2),
14
- nn.ReLU(),
15
- nn.MaxPool2d(kernel_size=2),
16
- )
17
- self.conv2 = nn.Sequential(
18
- nn.Conv2d(16,32,5,1,2),
19
- nn.ReLU(),
20
- nn.MaxPool2d(2),
21
- )
22
  self.out = nn.Linear(32*7*7,10)
23
 
24
  # Forward propogation method
 
7
  """
8
  A custom CNN class. The network has: (1) a convolution layer with 1 input channel and 16 output channels with ReLU activation and 2x2 max-pooling, (2) a second convolution layer with 16 input channels and 32 output channels with ReLU activation and 2x2 max-pooling, and (3) a linear output layer with 10 outputs.
9
  """
10
+ def __init__(self):
11
+ super(CNN,self).__init__()
12
+ self.conv1 = nn.Sequential(
13
+ nn.Conv2d(1,16,5,stride=1,padding=2),
14
+ nn.ReLU(),
15
+ nn.MaxPool2d(kernel_size=2),
16
+ )
17
+ self.conv2 = nn.Sequential(
18
+ nn.Conv2d(16,32,5,1,2),
19
+ nn.ReLU(),
20
+ nn.MaxPool2d(2),
21
+ )
22
  self.out = nn.Linear(32*7*7,10)
23
 
24
  # Forward propogation method